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IX. MICROSTRIP LINE LEAKY-WAVE STRIP ANTENNAS

(With: Dr. K. S. Lee, former Ph.D. student,
now at Texas Listruments, Dallas.)

A. BACKGROUND AND MOTIVATION

During the late 1970's, a paper presented by H. Ermert at the European
Microwave Conference stimulated instant controversy. That paper and a subsequent
publication [25] presented a thorough mode-matching analysis of modes on microstrip
line, treating numerically the dominant mode and the first two higher modes. A
principal conclusion was that a "radiation" region exists close to the cutoff of the
higher modes, although no mention was made of the characteristics of this "radiation!'
region or of the nature of the radiation. Because the description of this region, made
in that talk and in published papers [25,261, was incomplete and therefore unclear to
many, confusion persisted and certain practical consequences remained hidden.

Also in this general period, a paper by W. Menzel [27] presented a new traveling-
wave antenna on microstrip line fed in its first higher mode and operated near to the
cutoff of that mode. Menzel proposed his structure as a competitor to a microstrip
patch antenna, and he therefore made his antenna short in terms of wavelength. He
also assumed that the propagation wavenumber of the first higher mode was real in
the very region where Ermert said no such solutions exist; since his guided wave, with
a real wavenumber, was fast in that frequency range, Menzel presumed that it should
radiate. His approximate analysis and his physical reasoning were therefore also
incomplete, but his proposed antenna was valid and his measurements demonstrated
reasonably successful performance.

The first feature of interest or challenge here thus involves the clarification of the
confusion or contradictions implicit in the paragraphs above. The second feature of
interest relates to the stark simplicity of Menzel's antenna; it consists simply of a length
of wuform microship line fed in its first higher mode Menzel's antenna is incompletely
understood; for example, it seems to be too short since a large back lobe was found
experimentally, but it is puzzling why the antenna should radiate so well in traveling
wave fashion even though it is so short (2.23Ao ). Thus, an accurate analysis of that
structure should explain the questions about its behavior, and indeed tell us how to
improve its performance features. In view of the structural simplicity, one is
stimulated to perform such an analysis in case it may result in a practical new antenna
type.
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The apparent contradictiom are resolved when it is realized that leaky modes are

present in this "radiation" region, and puticularly so If the region can be characterized

by only a sibe leaky mode. Not all leaky modes are physically significant, and more

than one leaky mode may be present at the same time; each case must be examined

separately for the physical significance of the role of leaky waves in any given

"radiation" region. We conduct such an examination in Sec. D of this chapter, making

use of the steepest descent plame, and we show that Ermert's "radiation" region is

characterized in a highly convergent manner by essentially a single leaky mode.

Once we recognize the relevance of leaky modes to the "radiation" region of

microstrip line higher modes, the application to leaky-wave antennas becomes evident.

In particular, it is clear that Menzel's traveling-wave patch antenna is a leaky-wave

antenna in principle, even though he did not recognize this fact and did not discuss the

antenna's design or behavior in those terms. A leaky-wave analysis is necessary to

answer the questions raised above, and to learn how to improve the antenna

performance in a controlled way.

The existing literature does not contain any solutions relevant directly to this

problem. Neither Ermer's [25,26] nor Menzel's [27] papers contain any complex

solutions for the propagation constant. Ile only complex solutions for microstrip

higher modes are given by J. Boukamp and R.H. Jansen [28] as part of a larger paper,

but those solutions hold for a line with a top cover such that only the surface-wave

mode can leak away.

None of these papers discusses the nature of the leakage produced. It turns out

that the leakage is composed of two types, a surface wave and a space wave, and that

each occurs at different onset conditions. These interesting features, and the ratio of

the powers radiated into each type, are discussed in Sec. B.

Motivated by the reasons above, we have conducted studies along the following

lines:

(a) Examination of the nature of the leakage: the types, onset conditions, and

proportion of power into each type (Sec. B).

(b) Derivation of an accwate solution and computation of numerical values for the

properties of microstrip line higher modes in their leakage range when there is no top

cover, corresponding to the ctse of an antenna (See. C).
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(c) Employment of the steepest descent plane to asst ss the validity of the intuitive

presumption that the "radiation" region is characterized essentially by only a single

leaky mode (See. D).

(d) Analysis of Menzers antenna, and numerical comparisons with his

experimental and theoretical results, together with an evaluation of his antenna (Sec.

E).

(e) Presentation of performance characteristics of properly designed leaky-wave

antennas of the Menzel type (Sec. E).

Some of the contents of Secs. B, C and E have been presented at symposia and

appear in their Digests [29-311."

After the writing of this chapter was completed, some of the material that was presented at an
URSI Symposium 1311 was included in a short paper that appeared in Radio Science [321. One of
the reviewers of that paper indicated that some Russian publications contained material that
overlapped some parts of Sees. B and C of this chapter. Those references, and hw their contents
relate to those of Secs. B and C of this chapter, are given in 1321.



l, THE NATURE OF THE LrAKAGE FROM HIGHER MODES ON
MICROSTRIP LINE

The dominant mode on open microstrip line is always purely bound, but the higher
modes can leak power away when the frequency goes below some critical value.
When the open microstrip line is operated in its first higher mode, the electric field
lines are roughly those shown sketched in Fig. 9.1. We see, therefore, that radiation
can be expected to occur directly above the strip and with horizontal electric field
polarization. Power can also b~e leaked away in the horizontal direction in the form of
a surface wave.

r~

Fig. 9.1 Rough .ketch of electric field lines for open microstrip
line operated in its first higher mode.

The complex wavenumber k. of the guided leaky mode is in the form

kz = 0-Ia (9.1)

where P is the phase constant ;and a is the attenuation constant, % hich represents loss
due both to leakage and to metal and dielectric losses. We assume here, however, that
the metal and dielectric losses are negligible, so that a may be viewed directly as a
leakage constant.

1. The Radiation Region and Leaky Modes

One of the figures presented by Ermert (25,261 is reproduced here, with
modifications, as Fig. 9.2. His curves are the solid ones shown, for the lowest mode
and the first two higher modes of microstrip line. All of his wavenumber values are
real, meaning that the modes are purely bound in those ranges. He states, however,
that in the region shown lined no real solutions exist, and he called this region the
"radiation region." We have added the dashed lines appearing in this region in Fig. 9.2,
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EHo

A 2o surface wave
Ito dispersion curve1.0 radiation,

0 10 20 30 40

f in GHz

Fig. 9.2 Dispersion curves for the lowest mode and the first
two higher modes in microstrip line with a top cover.
The normalized phase constant O/k. is plotted against
frequency. The solid Lines (given by Ermert [25,26])
represent real wavenumbers, whereas the dashed lines
correspond to the real parts of th leaky mode
(complex) solutions in the "radiation region." The
microstrip line dimensions are: strip width - 3.00
mm; dielectric layer thickness - 0.635 mm, c, - 9.80,
and the height of the top cover is five times the
dielectric layer thickness.

13 ks

NZ kx

Fig. 9.3 Top view of the strip of microstrip line and the
dielectric region around it. Wavenumbers 6 and k,
correspond, respectively, to the phase constant of the
leaky mode guided by the strip and the wavenumber of
the surface wave that propagates away at some angle
during the leakage process.
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which corresponds to complex solutions, and where, of course, only the real part is
plotted. Physically, these complex solutions signify that this mode has become leaky in
this region.

Ermert selects a spectra description for the modes of microstrip, and in his second
paper 126] he rejects any inclusion of leaky modes since they are non-spectral (true).
He then concludes that these leaky modes are "no longer of importance" in his analysis
(false). His rejection of leaky modes not only caused much initial confusion, but it
prevents one from understanding certain practical consequences. Not all leaky modes
are physically significant, but we show in Sec. D, by reference to steepest-descent
plots, that for this problem the continuous spectrum in Ermert's region is
characterized in a highly corvergent manner by essentially a single leaky mode. The
physical importance of leaky modes despite their non-spectral nature is quite an old
story, but it must be shown in each case that a particular leaky mode is physically
valid; in this case, we have shown that it is, in agreement with obvious physical
intuition.

2. The Two Forms of Leakage

The leakage can occur in two forms: a surface wave and a space wave.
Furthermore, the onset of leA.kage for each form is given by simple conditions.

A top view of the strip and the dielectric region around it is shown in Fig. 9.3.
With this figure, we examine the case of leakage away from the strip in the form of a
surface wave on the dielectric layer outside of the strip region. When there is leakage
into the surface wave, the modal field propagates axially (in the z direction) with
phase constant 0, and the surface wave propagates away (on both sides) at some angle
with phase constant k. , as shown in Fig. 9.3. The surface-wave wavenumber k. has

components Az and k in the z and x directions, respectively, where kc must be equal
to , since all field constituents are part of the same leaky modal field. We may
therefore write:

2 2

k2=ks2. J62 (9.2)

For actual leakage, k must Ie real, so that the condition for leakage is Ax2>0. (When
there is no leakage, i.e., the mode is purely bound, the modal field decays transversely
and kA is imaginary.) Applying this condition to (9.2), we find that, for leakage,

<k. (9.3)
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Relation (9.3) defines the lined region in Fig. 9.2; the upper boundary of that region is
actually the dispersion curve for the surface wave, of wavenumber ks , that can be
supported by the dielectric layer on a ground plane, if the microstrip line is open
above, or by the dielectric layer between parallel plates, if there is a metal top cover.
At the onset of the surface wave, it emerges essentially parallel to the strip axis,
consistent with the condition#3 = ks .

As 03 (by lowering the frequency) is decreased below the value k. , power leaks
away in the form of a surface wave, as discussed above. As 6 is decreased further,
power is then also leaked away in another form, the space wave. If the rnicrostrip line
is open above, this wave actually corresponds to radiation at some angle in the yz
plane, the value of this angle changing with the frequency. At the onset of thii space
wave, the wave emerges essentially parallel to the stri! axis, so that /3 = k, then.
where ko (= 27r/Ao ) is the free-space wavenumber. This boundary correspond, to the
horizontal line/t/k0 = 1 in Fig. 9.2. For values of /3/ko < 1 or

3 < ko  (9.4)

power will leak into a space wave in addition to the surface wave. Condition (9.4)
corresponds to the statement that the mode will radiate when its velocity is fast
relative to that for free space, in conformity with standard antenna thinking.

What happens when the microstrip line has a top covr, of height H? If H <,Ao/2,
approximately, such that only the surface wave can propagate in the dielectric-loaded
parallel-plate region, then all the other modes are below cutoff, and power can leak
away only in surface wave form. If the plate spacing is increased, then some of the
non-surface-wave modes are above cutoff, and these modes can also carry away
power. The "space wave" then corresponds to the sum of those modes.

At what value of P do these "space wave" modes begin to contribute to the
leakage? The value depends on the height H of the top cover. In most microstrip
lines, the dielectric layer is only about a tenth of a wavelength thick. If the top layer is
two wavelengths high, for example, the dielectric layer occupies a very small portion of
the cross-section, and it affects only slightly the properties of the non-surface-wave
modes. As a good approximation for such modes, therefore, let us neglect the
dielectric layer in computing the mode propagation constants so that we can obtain a
simple condition for the onset of that form of leakage. The first above-cutoff
parallel-plate mode will then have the wavenumber
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and the condition for the leakage into that mode, following the reasoning used

previously, is

0 < kPP (9.5)

or
1/2

k < <1 i 2 J (9.6)ko 2

For H large with respect to wavelength, the critical value of /ko is almost unity,
which is the value corresponding to the open microstrip line. As examples, for
H/Ao = 5, 2, and 1, respectively, 3/ko is 0.995, 0.97, and 0.87.

3. The Ratio of Powers in the Surface Wave and the Space Wave

The last consideration in this section relates to the ratio of power leaked into the
surface wave to that into the 'space wave" in either the open or covered cases. As one
extreme, when the height of the top cover causes all of the non-surface-wave modes to
be below cutoff, all leaked power must be in surface wave form. As the height of the
top cover is increased, so th. t both forms of leakage may be present simultaneously,
this ratio will decrease. To determine this ratio quantitatively, we set up a mode-
matching analysis that permitted us to know how much power leaks into each of the
above-cutoff modes, including the surface-wave mode. The mode matching was
established at the vertical ph,-ne corresponding to the side (or edge) of the strip, and
the computer program for the procedure was furnished through the courtesy of Prof.
S.T. Peng of the New York Irstitute of Technology.

We define R as the ratio of the power radiated into the surface wave to the total
radiated power. The structure into which the radiation occurs is a parallel-plate
waveguide of height H, in wlich we vary the height H of the top cover to determine
how the ratio R changes with height H. We achieve the open microstrip line in the
limit as H--# co. Curves of "atio R as a function of height H were obtained for a
specific set of microstrip line dimensions, for three different frequencies. The line
parameters are (see Fig. 9.1", w - 15.00 mm, h = 0.794 mm and e. -2.32, and the
three frequencies are 8.20 GHz, 8.00 (;Hz and 6.70 GHz. These cross-section
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dimensions are those used by Menzel [27] for his antenna, his operating frequency was
6.70 GHz. In order to simplify the calculation, since h /, o << 1 and H >> h, we

assume that the dielectric material does not extend outside of the strip region, so that
the region outside is a pure parallel-plate region. The resulting geometry is shown in
the insets in Figs. 9.4 to 9.6. The error introduced is belie'ved to be very small, but the
calculation procedure is simplified substantially.

To summarize the objective here, we take the microstip line to be operating in the
leakage range of the first higher mode. When there is a top cover present, of height
H, the power that leaks goes into parallel-plate modes. As the frequency is l)wered
into the leakage range, the power at first leaks only into the n =0 parallel-plate mode
(a TEM mode, which corresponds to the surface-wave mode that would be present if
the thin dielectric layer of height h continued into the parallel-plate region). As the
frequency is lowered further, or as the top cover is raised, additional parallel-plate
modes carry power. We wish to know, for the anienna application later, the
proportion of power going into the surface wave (here the TEM mode) to the total
power radiated. We thus define the ratio R as

P
R PO +(9.7)

n n

where Po is the power in the TEM (n= 0) mode, and P," and P"" are the powers

carried by the n th TE and TM modes, respectively, where these various modes
propagate at various angles in the parallel-plate region, the angles changing as the
frequency or the plate height H changes.

The variations of ratio R with normalized plate height H/Ao for three different
frequencies are presented in Figs. 9.4 to 9.6. The frequency of 8.2 GHz for Fig. 9.4 is
the one closest to the onset of leakage. We note that for small values of H/Ao the
ratio R = 1, indicating that only the TEM mode is above cutoff. As H/,\, increases,
we observe first a very sharp drop and then a recovery to a much smaller value since
now the n -1 modes share the total power. This behavior continues in characteristic
fashion as H/Ao increases further. For the curves in Figs. 9.5 and 9.6, corresponding
to lower values of frequency, we see that the range over which only the TEM mode is
present becomes greatly reduced, and that the value of the ratio R becomes very small
when H/A0 becomes large. The latter feature is especially pronounced in Fig. 9.6,
where a dashed line is introduced to represent the average behavior of the curve since
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toC 1-8.2 G(3Hz -

A f~h L
h -0.794mm
w-1 5.00mm
dr -2.32

0.6-

0.01 0.0 18.0
H/Xo

Fig. 9.4 The ratio R of the power radiated into the lowest
mode to the total power radiated into all the
propagatiiig modes in the external parallel plate guide
as a function of the height H of the metal top cover
(see inset). For frequency f a 8.20 GHz, near to the
onset of leakage.
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1.0 
--. G Z-

R f LHA

h - 0.794mm

w -16.00mm

0.5-

0 0  5.01001.

HA 0

Fig. 9.5 Same as Fig. 9.4 except that frequencyf - 8.00 0Hz.



1.0-[ S6. 7 QHZ -f
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0- -. -

0 5.0 10.0 18.0
HA 0

Fig. 9.6 Same Ls Fig. 9.4 except that frequency f - 6.70 GHz,
the opt-rating frequency that Menzel [27] employed for
his antenna. The dimensions in the inst correspond
to thos..- of his antenna.
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the sharp variations then become individually small and very close together. At a
value of H/, 0 of 15 or so, for this case, we see that the ratio R is only about 0.02,

signifying that very little of the radiated power actually ends up in the lowest mode
when the top cover height is electrically large. This result is very encouraging for
antenna applications, where one wants as much power as possible to go into the space
wave.

The eremely sharp dip that is seen in Figs. 9.4 to 9.6 at the value of H/A'o at
which the next higher mode begins to propagate deserves further examination. Since
P =Y,1 I i 2 for any given mode, we may rewrite (9.") in these terms. The mode
voltages V. are excited by the electric field in the vertical plane defined by the side of
the strip region, and are different for each mode. The characteristic admittances Yn
could be phrased either in terms of TE and TM modes propagating at an angle or as
H-type and E-type modes propagating in the x direction. It is more direct to ase the
H-type (LSE) and E-type (LSM) modes, for which ([33] or [14))

( k'p ) 2

n- (9.8)

" - (kp)2 (9.9)

where k is the propagation wavenumber of the n th parallel-plate mode in some
direction ,and k. is the component of that mode in the x direction, perpendicular
to the strip axial direction.

Relation (9.7) for R is then rewritten as

Yo I v0 2

R 2 2n 2 (9.10)

n1 n

or
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1
R 2 , ~ (9.11)

The forms of Yn, and Yn" are given by (9.8) and (9.9); we see from (9.8), for H-
type (ISE) modes, that when k, -+ 0, Yn" -- oo, corresponding to the condition for
cutoff of that mode. Thus, as that mode just begins to propagate, the term
corresponding to it in the denominator of (9.11) then greatly exceeds all the others,
and R -0 as a result. The effect should be vr ry sharp, and it should therefore result in
a strong deformation of a curve of R vs. H/,. The question as to whether R actually
goes to zero at that point is still open, however, since V may simultaneously go to
zero. One cannot be sure from the numerical solutions, and we have not checked this
point analytically.

Finally, we wish to find at what values of H/A the ratio R approaches zero. For
any given mode, the sum-of-cquares relation Decomes

2
1= ) +k +  

(9.12)

where

k

_ _ = ( 9 .1 3 )

andn,, - 83 for all the parallcl-plate modes since the whole guided mode moves in the
z direction with phase constantf1. Relation (9.12) thus becomes

S2 (9.14)

For Yn' to become infinite, we must set k ,/k o=0, so that (9.14) yields
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H n/2
--N [1- (0/ko)2 ]1/2 (9.15)

The sharp dips in the curves in Figs. 9.4 to 9.6 are fourd to occur exactly in accord
with condition (9.15).
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C. ANALYSIS AND PROPERTIES OF THE LEAKY MODES

1. Derivation of Accurate Expression for the Propagation Characteristics

H. Ermert [25] has performed a careful mode-matching analysis for the
propagation characteristis of higher modes on microstrip line, but two limitations
exist with respect to his solution. The first is that he obtains only eat solutions, so that
he provides no information with respect to the leaky wave range, which requires
complex solutions. The second is that his microstrip line structure has a top cover with
a height only five or so times the substrate thickness, so that even if he had furnished
leaky mode numerical values they would not be directly applicable to antenna
problems.

J. Boukamp and R.H. Jansen [28] do present complex solutions valid for the leaky
wave region of the first higher mode, but their structure also has a top cover that
permits only the surface wuV to propagate in the region away from the strip. Their
radiated power therefore occurs only in surface wave form, whereas we showed in the
previous section that in an antenna application very little of the radiated power
appears in that form since almost all of it goes into the space wave. Since the
Boukamp-Jansen results are not directly applicable, we felt it was necessary to derive
a reasonably accurate result for such leaky waves when there is no top cover present.
We present such a derivation below in this section, but a little later we compare
numerical values obtained from it with the values given by Boukamp and Jansen, and
we note the differences that -rise when a top cover is present or absent.

The cross section of microstrip line is shown again in Fig. 9.7, where the mid-plane
is seen to be an electric wall, or short circuit, in agreement with the electric field lines
indicated in Fig. 9.1. We also draw attention to the vertical plane T, located at the
side (or edge) of the metal itrip. The width w of the strip is also much wider than
typical values for dominant mode use. Below the cross section in Fig. 9.7, we have a
transverse equivalent network, representing the bisected structure, consisting of a
transmission line of length equal to w /2, the half-width of the strip, with a short circuit
on one side corresponding to the electric wall mid-plane, and a terminating
admittance on the other. The transmission line represents the dielectric-filled
parallel-plane region under tie metal strip; the only mode that can propagate there is
the TEM mode at an angle. The only element still needing characterization is the
admittance element Y evaluaited at reference plane T. A transverse resonance of this
network would then yield the transverse wavenumber kxe, which is related to the
desired longitudinal propagation wavenumber k= - ja by
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k. ko2  *kx4 (9.16)

The propagation of the guided first higher microstrip mode can, of course, be
viewed in terms of this TEM mode under the strip boancing back and forth at an
angle between the two sides of the strip. In the frequenct range corresponding to real
values of Ic2 (see Fig. 9.2), total reflection occurs at each bounce, and the reflection

coefficient r at the strip side has magnitude unity. As the frequency is reduced, the
angle of the bounce gets closer to the normal. In the leaky wave region (the lined
region in Fig. 9.2), this angle is no longer beyond the; total reflection value, and
IF i < 1, where r is the reflection coefficient at T for t ie TEM wave incideiit at an

angle on the strip side, the geometry for which is shown iii Fig. 9.8.

We therefore need an expression for either the output admittance Y, or the
reflection coefficient F at the strip side (they are simply related, of course). It turns
out that a rigorous solution for F for the structure in Fig. 9.8 has been provided by
D.C. Chang and E.F. Kuester [34]. Their solution ii based on a Wiener-Hopf
approach, but unfortunately it is difficult to extract a usc ful analytical form from this
paper. In a later paper, however, E.F. Kuester, R.T. Johnk and D.C. Chang [35]
present a simpler formulation valid for electrically thin substrates (koh Vf,'< < 1),
which corresponds to our needs. They give numerical comparisons for severld cases
between their approximate simpler solution and their rigcrous one, and they show that
their approximate expression is very good under the thin-substrate condition. We
therefore employ their approximate formulation, which tfhey phrase in the form

r = ej X (9.17)

which is most directly useful when total reflection occurs, since X is then real. When
I F I < 1, corresponding to the leakage range, x becomes complex.

The expression for X under the thin-substrate approximation is given in reference
(35] as Eqs. (13) to (16), together with Eqs. (7) and (9). Their notation is quite
different from ours, and the following correspondences apply:

n = V', a = kz /k o , d = h, [n2- a 2) 1/ 2 = kx,/k °  (9.18)

[1- 4 1/ 2 = kk, , [a2-111/2 = jkx/k o (9.19)
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Fig. 9.7 Cross-sxction of microstrip Line operated in its first

higher imode, so that the strip is wider than usual and
the mid-plane has short-circuit symmetry. Below it we
have the transverse equivalent network for the
structur -, where terminating admittance Y, is located
at refert:nce plane T.

metal top

........ ...... ........

Fig. 9.8 Geometry of side of strip in microstrip line when
isiolated from the other side. This is the structure for
which r is derived in reference (351, but the notation
and coordinate system used in our equations are those
indicateu here.
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For total reflection, k. = -j I kx I, so that then

[ -1 1/2 = I kx I /ko (9.20)

When our notation is employed in their equations, the expression for X actually looks a
bit simpler, and becomes k1

X = 2 tan1  k tanhA -fe(-kx /ko) (9.21)

with

=l(# hh ) [ni/z+ -y.1 ] + 2Q 0(..) -2Q0 (b~ (9.22)

2k 
fe('xs/ko = -(--{ j- lnxh+ 1] 2Q ,) Ifi} (9.23)ir t

where

, 6=-- 0 (9.24)
er +1 $Ar'

Qo(z) = zM zInm , IzI<1 (9.25)
m~1

Q0 (0) = 0 , -y = 0.5772

We find that for er = 9.70, Q0 
= 0.175, while for c. = 2.32,o = 0.064.

Expressions (9.17) and (9.21) through (9.25) provide only the reflection coefficient
at the side of the strip; this reflection coefficient is simply an element in the transverse



- 308-

equivalent network shown in Fig. 9.7, and it must be utilized in the transverse

resonance condition. If we wish to employ the admittance form of this condition, we

recall that

YF X (9.26)

0. i+r2

using (9.17). For the short-circuit bisection of the structure shown in Fig. 9.7,

corresponding to the first tigher mode and other odd-numbered higher modes of

microstrip line, the transvers,: resonance condition

f (T) + V(T) = 0 (9.27)

in admittance form yields

w X
cot kxe 2 + tan 2 = 0 (9.28)

For the even-numbered modes, for which the mid-plane is a magnetic wall or open

circuit, relation (9.27) yields
w

tank., -tan - = 0 (9.29)

The complex phase term X is of course given by (9.21) and the equations following it;

the finrd desired longitudina wavenurnber k2 (=P-ja) is obtained by using (9.28) or

(9.29) together with (9.16).

Although expressions (9.8) and (9.29) are simple enough, even simpler transverse
resonance relations are ob:ained by using the rnflectioi coeffcient form of the
transverse resonance conditi(.n

(T) r (T) = 1 (9.30)

When the mid-plane is a short circuit, r at the mid-plane is -1, and

F (T) = - e -j2kw/2 (9.31)
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Since 1(T) is given by (9.17), we find on use of (9.30) that

j (x-k,w) ±jn r
e -1 =e n odd (9.32)

or

x" kxW= n n , n odd (9.33)

When the mid-plane is an open circuit, r at the mid-plane becomes unity, and the
relation corresponding to (9.33) is

x. kxW = 2m ir , m integ'.r (9.34)

Of course, (9.33) and (9.34) can be combined as

x-kxcW n _n , n = 0,1,2,... (9.35)

where n =0 yields the dominant (quasi-TEM) mode, n =1 produces the first higher
mode, which is our primary interest, and the higher even and odd values of n
correspond to higher modes with open-circuit and short-circuit mid-planes,
respectively.

Some additional considerations are required before computations can progress for
complex values of k2. The quantities k.. and kz occurring in (9.21) to (9.23) and in

(9.35) involve square roots in their relation to k., as seen in (9.18) and (9.19). It is

necessary to select the proper signs of these square roots so that our solutions appear
on the proper sides of the branch cuts associated with these square roots. In reference
[35] the authors considered all wavenumber quantities to be either real or imaginary,
so that the considerations mentioned above were simpler. Here, the wavenumbers in
the leaky wave region are all complex.

The square roots involved are those indicated in (9.18) and (9.19) (it is seen that
the last equation in (9.18) is the same as that in (9.16)). The sign of each square root
must be taken consistent with the requirement that the guided mode field decay in the
z (longitudinal) direction, and therefore increase transversely in the x direction, such
that

kz = 3a , kx =kxr +Jkxzi, k = k,,+jk4d (9.36)
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where all constituent quantities are positive real. The signs to be taken are already
indicated in (9.18) and (9.19).

Lastly, we should appreciate that two types of approximaion are present in this
analysis of higher modes on microstrip line. The first one has already been
mentioned; it is that expresson (9.21) for X is valid only for thin substrates, and is a
simplification [35] of a rigorous (Wiener-Hopf) solution derived earlier [34]. The
error introduced should be small, since our microstrip dielectric thicknesses h all
satisfy the thin substrate condition.

Mx second type of approxdmation may be expressed as the neglect of interaction
between opposite sides of the microstrip line. Our transverse equivalent network (Fig.
9.7) recognizes the symrietry present, and accurately represents it. The
representation for the strip side, however, comes from a solution, (9.21), that
corresponds to an isolated stip side, as shown in Fig. 9.8, with the other side infinitely
far away. There can exist some field interaction between the to sides that is not
taken bito account in our amdysis, but such interaction should be very small when the
strip is reasonably wide, as it is for all the cases we consider.

It &s believed that the aalysis presented is accurate for the structures and the
conditions considered here, and such belief is vindicated by the comparisons shown
next with special cases in 'he literature where the results have been derived by
different approaches.

2. Numerical Comparisons 'with the Uterature

In order to check the &-curacy of the analysis presented alxove, we have made
numerical comparisons witl two cases in the literature, the first for purely real
solutions for the propagation wavenumber and the second for complex values. These
two cases have already been mentioned at the beginning of subsection 1.

The case for which all tie numerical values of the propagation wavenunber are
real is the one by Ermert [2.]. Ile computes numerical results for three modes: the
dominant mode (n -0), and the first two higher modes (n -1 and 2), but only in the
range for which the modes are purely bound. His analysis involves a mode-matching

procedure in the horizontal direction, and it is therefore completely different from the
one presented here. Furthcrmore, his structure is somewhat different; it has a
metallic top cover whereas ours is completely open above.
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A comparison between the wavenumber values computed by Ermert [25] and by

us is presented in Fig. 9.9, where the solid lines represent our numerical values and the

dashed lines those of Ermert. It is seen that the agreement between the two slutions

is excellent for all three modes over most of the frequency range. A small discrepancy

between the two solutions appears for each mode near tht low frequency end for each

of the modes. Such a discrepancy is to be expected since in those regions the vertical

decay rate of the field is less, so that the effect of the to[ cover is more pronounced.

We may therefore conclude that the difference between tl:e two solutions is due to the

presence of the top cover in Ermert's structure, and that the accuracies of both

solutions are quite good.

The second comparison is made with the results presented by Boukamp and

Jansen [28], which apply to the leakage range, where the wavenumbers are complex

They present results only for the first higher mode; their method of analysis is

completely different from ours, being based on a spectral domain approach taken in

the vertical direction; and their structure differs from ours in that they enploy a

metallic top cover, as does Ermert. We should therefore expect certain differences in

our comparison, and indeed we find some.

The dispersion data are presented by Boukamp and Jansen in a different sort of

plot, reproduced here as Fig. 9.10.

100 200 k ' Im' .
o3.5 .0

---- 1 .0 -ttIG~z

;A h - 0,635mm

-100 1 h2/hz 10

k 2wlhi: 5

r Cr.s 9.7E,
E2- 1,0Oc,

4 - 1 2.0II

Fig. 9.10 Dispersion data computed by Boukamp and Jansen
[281 for a covered microstrip line for the first higher
mode in the range of complex values. The notation is
different from ours; in particular ky" and ky' are our 3
and -a, respectively.
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The wavenumber components k" and ky' are our 1 and a, respectively, their 2w is
our strip width w, h 1 is our dielectric thickness h, and h2 is the height of the top
cover measured from the strip. The frequency is indicated as a parameter along the
curve of k" vs. k'. We have obtained their values of a and P as a function of
frequency by interpolation from this plot.

Since k. is now complex, comparisons are made fcr both a/ko and 1/ko , and
these comparisons appear in Fig. 9.11(a) and (b). The effect of a top cover is
obviously more pronounced in the leakage range since the nature of the space wave is
seriously modified by it. In fact, for the dimensions of the structure in Fig. 9.11, the
top cover permits the presence of the surface wave only, whereas the leakage from our
open-topped structure is due almost completely to a space wave, as shown in Sec. B,3.
We should therefore expect significant differences between our solution (solid curves)
and those of Boukamp and Jansen [28] (dashed curves).

We observe from Fig. 9.11(b) that in the neighborhood of the onset of leakage the
values of /ko for the structure with a top cover are slightly higher than those for the
completely open structure. That same behavior is seen in Fig. 9.9 for Ermert's
structure as one approaches the onset of leakage. Also :,hown in Fig. 9.11(b) are the
very slightly curved solid and dashed lines corresponding to 13/ko =ks /ko for the open
structure and for the one with the top cover, where k. is the wavenumber of the
surface wave in the outside region in each case. Those values are different for the two
structures because the top cover increases the value of ks . As explained in the
discussion surrounding (9.3) in Sec. B,2, the leakage begins in the form of a surface
wave when the /ko curve crosses the k /, ko dispersion curve corresponding to it. We

may note that the onsets of leakage in Fig. 9.11(a) correspond to those crossings in
Fig. 9.11(b), as they should. The space wave contribution to the leakage from the
open structure begins at the frequency at which the 13/k0 curve crosses the 13/ko - 1
line.

It is interesting to observe that despite the stnictural differences and the
differences in the nature of the leakage, the basic curve shapes are very similar, and
the onsets of leakage occur at almost the same frequency. Regarding the performance
differences, some points have been noted above; another feature is that the top cover
seems to enhance the leakage rate. It should also be observed that for both cases the
leakage rate becomes large rather rapidly as the frequency is lowered.
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Fig. 9.11 Varition of leakage constant a/k. (figure (a)) and
phast constant O/k. (figure (b)) with frequency for
the first higher microstrip mode in its leakage range.
The solid lines in both (a) and (b) represent our
solutian for an open microstrip line, and the dashed
in are the numbers presented by Boukamp and

Jansen [281 for a lie with a top cover of small height.
The microstrip line dimensions are those given in
refer,.nce [281: dielectric layer thickness hI - 0.635
mm, strip width - 5 h1, c, a 9.70, and for the
cover d case, the height of the top cover v 10 h1
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D. STEEPEST-DESCENT PLANE FORMULATIONS

1. Motivation

The two related reasons for undertaking an alternative representation of the field
in terms of the steepest-descent plane are:

(a) to assess whether or not the complex (leaky mode) solutions for rnicrostrip line
higher modes are physically realizable; and

(b) to determine whether or not more than one such leaky mode can contribute
physically to the field at the same time.

Solutions to the dispersion relation for a given structure may or may not be
physically meaningful. We must examine whether or not that solution will contnbute
to the field of an arbitrary source placed in the neighborjiood of that structure. Even
a solution that satisfies all boundary conditions in addition to the field equations need
not contribute directly to the actual field, and may therefore not be actually physically
realizable. A well-known example is the Zenneck wave, which can at best contribute
weakly to the total field only as a correction term, in the mathematical sense of a pole
located close to a saddle point with the pole itself not cont ributing.

When the solution is a leaky mode a further doubt is ntroduced because the leaky
mode does not satisfy the boundary conditions at infinity in the cross-section. The
solution thus implies that the field increases transversely away from the structure and
diverges at infinity. This non-physical feature of the leaky wave solution disqualifies it
from inclusion in a "proper" or "spectral" field representation, but the leaky wave can
itself be physical because it exists only in a restricted region of space and never reaches
infinity. These subtle features have historically been the subject of much confusion
and speculation, but they have been explained in quite simple terms many years ago in
various contexts [for example, 36-381. The fact that leaky waves can indeed be
physical and can indeed represent a physically realizable and practical portion of an
antenna's near field is a well-known old story, but in each case one's intuition must be
supplemented by a determination as to whether or not a particular leaky wave actually
contributes to the field.

The usual field representations are the "proper" or "spectral" representations,
consisting of all the discrete modes plus the continuous spectrum of an open structure.
All of these modes are proper in the sense that, suitably defined, they satisfy all
boundary conditions, including those at infinity for an open structure. Since leaky
waves do not satisfy the boundary conditions at infinity, they are "improper" modes
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and they are not included in a spectral representation.

On the other hand, leaky waves are included in a hidden way within the continuous
spectrum of proper modes, and may in fact in many cases be viewed as a hih4y
coiw rewpftwb of this continuous spectrum. The continuous spectrum has
rarely been found to be useful directly in practical problems, whereas leaky waves
have been shown to be enornmously practical both in the design of leaky-wave antemus
and in the explanation of mnty physical phenomena, including Wood's anomalies on
optical gratings [39], Cerenkov and Smith-Purcell radiation [40,41], radiation from
plasma-sheathed reentry vehicles [42,43], blind spots in phased-array antennas (44),
optical prism and grating couplers [45], and so on. Ermert [261 realized that leaky
waves were included in the ,:ontinuous spectrum description of his "radiation" region
of microstrip higher modes. but he chose to describe that region only in spectral
terms, and he rejected any further consideration of leaky modes, thereby neglecting
the only practical way to evaluate explicitly the properties of the "radiation" field.

We stated above that leaky modes are contained within the continuous spectrum,
but a rephrasing of the continuous spectrum in terms of leaky modes is most practical
if the field in the "radiation' region can be represented essentially by only a single
leaky mode. Although we inay believe intuitively that this should be the case, the
purpose of this section is to assess quantitatively the validity of this supposition.

In order to determine waether or not the leaky mode corresponding to the first
higher mode on microstrip Lne contributed to the "radiation" region field, and also if
other leaky modes may cuntribute at the same time, it is necessary to use a
represcntation that Ls not specraL The customary alternative representation for this
purpose is the steepe.st.descent representation. It is simple in formulation, and it
possesses many virtues. For example, the representation automatically has a polar
form, with a saddle point given directly by the observation angle 0. Before we make
use of the steepest-aescent representation, we review some of its properties in the
next subsection.

2. Review of Some Properties of the Steepest-Descent Representation

We are concerned with evaluating the field in the vertical plane above the center

of the strip; that plane is the.iz plane in Fig. 9.12, and it bisects the cross section. The
field E at and above the inte face (y >0) is then given as
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00

I " ik~z

E(y,z) = f f (k)e kY e dkz  (9.37)
.-00

when we adopt the time dependence exp (-i). This time dependence was selected in
this section so that the more customary form for the steepest-descent plane can be
employed; however, all relations here can be made consistent with the usual
engineering choice (exp (jia)) for the time dependence, used everywhere else in this
report, by simply replacing i by -j wherever it appears.

Cross Section Longitudinal
View View

Fig. 9. 12 Cross-section and longitudinal views of microstrip line,
showing the coordinate system used.

The wavenumber variables ky and k. in (9.37) are evidently related to each other

by

k: = ±-(ko-k 2)1 2  (9.38)

where ko is the free-space wavenumber. The term f (k ) depends on the structure

and the manner of excitation. Relation (9.37) expresses the field as a Fourier
transform with respect to k., the integration being carried out along the real axis of

the complex k. plane. Physically, this representation is phrased in terms of
tran.rmission in the transverse (y) direction, with modes of the form exp(ikz). Thus,
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this representation consists of a continuous spectrum with purely real eigenvalues
varying betwen positive and negative infinity. Lastly, because of the open nature of
the structure we must impose a radiation condition at infinit) in the y direction as

Im(k,) - k > 0 (9.39)

where in means the 'imagiray part of;" condition (9.39) thus implies that the waves
are decaying properly in the cross section as y -- oo.

Because of the square root in (9.38), the k. plane contains two branch points and

therefore consists of two Riomann sheets. It is onvenient to choose the branch cuts
so that those solutions satisfying (9.39) lie on the upper of the two Riemann sheets;
the appropriate branch cuts are shown in Fig. 9.13, which presents the upper (or top)
sheet of the k. plane. The cuts, corresponding to ky) =0, and the locations of the
branch points above and bei3)w the real k. axis, are consistent with the consideration
that the medium in space possesses infinitesimal losses, that is,

0 < Imk 2 << I k 1 2 (9.40)

The integration in (9.37) car. then be carried out along the entire real kz axis in the
top sheet of the two-sheeted k. plane.

The usual first approach :o evaluating this integral is to deform the original path P
of integration into the path P" along the semicircle at infinity, as shown in Fig. 9.13
for positive z; for negative z, the semicircle would be in the lower half of the top sheet
of the k. plane. The semicircle at infinity contributes nothing to the integral; hence,
by Cauchy's theorem for complex integration, the representation in (9.37) may be
written as

,E~y,.') 1(ky) eIe k dkY + 27ri EResidues (9.41)
2w .v (9.41)

The integration in (9.41) is ci.ried out along the entire real ky axis, and it corresponds
to a pah around the branch :ut in Fig. 9.1- The residue contributions may be present
because ot possible pole singilarities which occur in the top sheet of the k. plane.

The alternative representation effected by the path deformation and indicated in
(9.41) corresponds to transmission longitutdinally along the z dir,.ction, with modes
defined in the plane transver,.e to z. The representation in (9.37) irvolved a
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Fig. 9.13 Top Riemann sheet of the complex k, plane, showing
branch cuts and paths of integration.

continuous spectrum only, but the one in (9.41) is seen to comprise both a continuous
spectrum and discrete modes, corresponding to the pole residues. These poles are
classified as "proper" or "spectral" poles since their fields comply with radiation
condition (939) and therefore decay at infinity. Such poles correspond to surface
waves or proper complex waves. On the other hand, leaky-wave poles are located on
the bottom sheet of the kz plane and are never captured by the deformed path P';
they therefore never contribute to a spectral representation, and are classified as
improper, or non-spectral.

The continuous spectrum in (9.41) corresponds precisely to the continuous
spectrum representation of Ermert [261 in his "radiation" region. Unfortunately, the
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Fig. 9.14 The ste.pest-descent plane, showing the original path
P and the steepest-descent path SDP. The semi-
infinite strips marked T, through T4 correspond to
quadrants similarly labeled on the top surface of the k,
plane in Fig. 9.13; the ones marked B correspond to
quadrants on the bottom Riemann sheet of the k.
plane.

integral in (9.41), corresponding to this continuous spectrum, is still very difficult to
evaluate, and another metlod is often used. This other method employs a
transfornation to the steepest-,descent repreventation.

For the steepest-descent representation, a transformation

k.- kosin4 , k - k cos (9.42)

is employed, where 4 - @' +i 0, is the complex plane in which the steepest-descent

integration is carried out. The transformations in (9.42) plot the entire two-sheeted k.

plane into a strip 2s wide in the 0 plane, as shown in Fig. 9.14. It is noted that each of
the eight quadrants in the kz plane transforms into a semi-infinite ,trip in the ' plane

identified as T (top) or B (bottom) and the quadrant number. The original path P,
also shown in Fig. 9.14, is deformed into the steepest-descent path SDP which passes
through the saddle point at 4 = 9 and is defined by

cos(O, -0) cosh i = 1 (9.43)
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The saddle point integration is straight-forward since simple recipes are available
for it. We need not consider that integration procedure here except to point out some
features concerning it. The result of that integration yi,1ds the asymptotic for field,
valid only when r is large, in a direct polar form with the observation point
represented by (r,O) rather than (y ,z). Also, the saddle point is given directly by the
angle of observatkin i (As seen from Fig. 9.12, r and 0 are respectively the radius
vector and the polar angle of the field point in space.)

The saddle point integration is only a partial solution of the integral in (9.37), and
it represents a contribution to the field that is called tie "space wave." Additional
discrete contributions may be present because of poles located between the original
path P and the deformed path SDP in the 0 plane. As se,.n from Fig. 9.14, these poles
between the two paths will be captured independently of whether they lie on a strip
marked T or B; in other words, the poles will contribute to the field whether or not
the poles are proper. Improper poles, such as leaky waves, which lie on the bottom
sheet of the two-sheeted kz plane, will contribute just as surely as proper poles, such
as surface waves, as long as they are captured during the deformation between the two
paths.

Whether or not a pole will be captured also depends on the angle of observation 4
As one scans the field from broadside to endfire as a function of 9, the steepest-
descent path (SDP) moves parallel to itself from its intersection with 4r = 0 to its
intersection with 0, = 7r/2. Thus, if one wishes to be sure that all possible poles will be

cap~ured the SDP curve should intersect the Or line at 7r/2. Let us label that SDP
curve as SDP +, and note from (9.43) that for9 = 7r/2 the SDP + curve is defined by

sin0, cosh0 = 1 (9.44)

Since our primary interest is in the leaky wave poles, the relevant steepest-descent
plane is shown in Fig. 9.15, where a typical improper po)le of this type is illutrated.
The pole is seen to be located on strip BI, which corresponds to the "wrong" Rierann
sheet of the k. plane as regards the spectral solution. When the pole is located as
shown, between the furthest steepest-descent path (SDP +) and the original path (P),
it is clearly captured, and it will contribute to the field. The condition for the leaky-
wave pole to be captured is thus

sinO. coshOi < 1 (9.45)

making use of (9.44).



\SDP+

Fig. 9.15 Leaky-wave pole located on strip corresponding to

improper solutions; also shown are the observation
angle 0, , and the furthest steepest-descent path,
SDJP,+ invicating pole capture.

y

Fig. 9.16 Near field tontours of a leaky-wave pole, where 0, is
the observa ion angle and 0,is the real part of the
leaky-wave pole location. Within the wedge-shaped
domain of validity, the solid lines represent equi-
amplitude c.ntours and the dashed lines signify equi-
phase canto irs. The arrow represents the direction of
power flow and increasing phase.
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When the observation angle is Gc, the SDPc will go through the pole, as "een in
Fig. 9.15. We note, however, that angle Gc is always greater than the angle
corresponding to 0 . This fact has important physical significance, as illustrated in
Fig. 9.16, which presents some field characteristics associated with the leaky wave.
The pole at 4P contributes to the field when O>Oc, but is not included in the field for
0<Gc.The region for which 0>0 thus defines the don'ain of validity for th,3 leaky
wave; it is physically significant only in that region. A seen in Fig. 9.16, the field
amplitude decays along z and is constant in the 0p, dir,':ction, so that the amplitude
must decay in all directions inside the domain of validity. Hence, the leaky wave field
exists only in the near fiel" and it cannot contribute directly to the far field. The
direction of power flow is also shown to occur in the 0p, direction, however, so that
,"e power in the leaky wave field continually moves out of the valid domain as the
field amplitude decays, thereby transferring its power io the space wave in steady
fashion.

Having discussed the physical meaning of the leaky wave, let us return to how one
can locate the leaky-wave pole in the steepe:;t-descent plane. Writing
k= ja = +i a, and 0 = 0r +i,l, the first of the two relations in (9.42) becomes

3/k o = sin ,cosh i (9.46)

a/ko = cos 4,, sinh Oi  (9.47)

We thus can readily find a and P from the pole locati -n, but an expression for the
reverse is not easy to locate in the literature. After inverting (9.46) and (9.47),
however, we can obtain Oi and 4,, in terms of a/ko and 3/to by means of the following

expressions:

cosh 2 Oi =-+ ['y12. (i31ko) 2 ] 1/2 (9.48)

2/2

sin41i = - 1 2_ (Olk )2 1 (9.49)

where -1 is defined as

2-y = 1 + (m/ko )2 + (l/ko)2 (9.50)
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These expressions were eriployed to obtain the various leaky-wavc pole plots
described in the next subsection.

The fie!d at the interfaw (in our case, the field at the top surface of the strip,
constituting an "aperture" field) due to a pole at Op = O, +iOp, is of the form

eIoZ e OZ , for z > 0 (9.51)

where a and P are found from 0 using (9.46) and (9.47). The terms 3 and a are
respectively the phase and the leakage constants along the interface. For low decay
rates, it is clear from (9.47) that either cos, or sinhOi must be small; the
corresponding poles must therefore be located close to either thep, = 7r/2 axis or the
=0 axis. If we set koZ = I i i the exp (-a z) factor, we see that if

c,'1c0, co ,pr si ,, 1 >1 (9.52)

the wave is very strongly attenuated, since the amplitude then decays by Il/e
(e - 2.718) in a travel of alproximately one-sixth of a wavelength. In Fig. 9.17, the
region defined by (9.52) i; shown unlined; if poles exist in this region, their
contribution to the total field can usually be disregarded since these waves may be
significant only within a veiy small region. Conversely, poles located in the lined
region of Fig. 9.17 yield fields that are more slowly damped and therefore extend out
for a larger distance. Contriiutions to the total field from these poles outside of the
lined region are generally negligible compared to contributions from poles within the
lined region.

3. Steepest-Descent Plane Plots for Microstrip Une Higher Modes

Using the. steepest-descent plane, we next determine the locations of the
microstrip-line higher-mode leaky-wave poles in this plane, to find out, first, whether
or not these poles are captur,..d and therefore contribute to the total field, and second,
if more than one higher-moIe pole may contribute at the same time. Before that,
however, we must obtain tht: values of a/k0 and /kO over a much larger range of
frequencies than we did in Se:. C. In that section, we computed the values for the first
higher mode (N= 1) only; here, we present results for the N =2 and N=3 higher modes
as well.
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3.0- SDP* (sin or cash 01 "1) ,s Or slnh -1 /

2.0- Region of Strongly
Contributing Poles

1.0-

0 0.2 0.4 0.6 0.8 1.1) 1.2 1.4 1.6

Or

Fig. 9.17 Steepest-descent plane, showing the ined region

within which leaky-wave poles contribute strongly to
the aperture field.

Numerical results are presented below for three structures: (a) a microstrip line
having the cross-section dimensions used by Boukamp and Jansen [28] but with an
open top, (b) the actual Boukamp and Jansen structure with a covered top, and (c) the
antenna structure described by Menzel [27], which of course has an open top. For
cases (a) and (c), we have results for the first three higher modes; for case (b), only

the first higher mode is treated, and the numerical values used for a/k o and f/ko are

those computed by Boukarnp and Jansen [28].

a. Microstrip Line with Open Top Using the Cross-Section Dimensions of Boukamp and

Jansen

The microstrip line structure treated in this subsection has the cross-section

dimensions of the line considered by Boukamp and Jansen [28], except for their top

cover. We have removed their top cover so that the line is completely open above; as
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a result, space wave radiation occurs when the frequency is lowered enough to cause
P/kO to becomes loss than undty (see Sec. B,2). The cross-section dimensions (see Fig.
9.1) are h - 0.635 mm, w = 3.175 mn, , - 9.70. The numerical values of a/ko and
P/ko were computed using the theory described in Sec. C,1; in particular, condition
(9.35) was employed together with (9.21) and its corollary relations.

In Sec. C,2 numerical values for a/k o and /k, were presented for the first higher
mode only, and also for a restricted frequency range, only that corresponding to small
values of a/ko . Here we must consider a much wider frequency range, and we also
present calculations for other higher modes. The first higher mode, which we label as
the N 1 mode, possesses field symmetry corresponding to an electric wall at the
vertical bisection plane (x -0). The next higher mode, designated the Nf=f2 mode, has
a magnetic wall at the bisection plane, as does the dominant mode, whereas the N =3
mode is the next higher mode with electric wall symmetry.

In Fig. 9.18, the values of a/ko are given as a function of frequency for the N=2
and N=3 higher modes. The onset of leakage for these modes occurs at much higher
frequencies, of course, but one notes that the values of a/k0 continue to increase
monotonically as the frequency is lowered. The corresponding values of P/k o as a
function of frequency are presented in Fig. 9.19. The behavior for frequencies just
below the onset of leakage ii similar to that found in Fig. 9.11(b) for the first higher
(N=i) mode; i.e., the values of 0/ko decrease as the frequency is lowered. When the
frequency is reduced further however, an interesting effect occurs the values of 3/ko

reach a minhnum and then slowly increase. For significantly lower frequencies, the
P/k o values actually exceed unity, but it is to be noted that for those frequencies the
values of a/k, are substantiadly larger than those of p/k o. The concept of "cutoff" for
these higher modes requires ,ome modification in the light of this behavior.

Figures 9.20 and 9.21 show how these values of a/ko and #/k4, for higher modes

N-2 and N-3 compare with those for the first higher mode (N- 1) in the frequency
range in which the N-1 mode is most important. One sees that the behavior for the
N-I mode is qualitatively similar to that for the other modes in Fig. 9.18 and 9.19,
and that, although the valuei for the N = 2 and N -3 modes are considerably higher
than those for the N - 1 mode, these other higher modes are still around and may
therefore contribute to the total field.

The ways in which these higher modes may contribute to the total field are more
clearly revealed by the use of the steepest.descent plane. Using the values of a/k o and
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Fig. 9.18 The leakage constant o/k 0 for the N - 2 and N - 3
higher modes of open microstrip line as a function of
frequency over a very wide frequency range.
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w-3.175 mm

T'O dr -9.70

0.6

0.4

0.2

p _ i _

010 16 20 25 30 35 40

f In OH

Fig. 9.19 The normalized phase constant f/k o for the N - 2

and N - 3 higher modes of open microstrip line as a
function of frequency over a very wide frequency

range.
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FVI. 9.20 Values of a/k0 for the first three higher modes of
open microstrip line in the frequency range over which
the leaky N - I mode is most important.
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Fig. 9.2 1 Values of P8/k, for the first three higher modes of
open microstrip line in the frequency range over which
the leaky N - I mode is most important.
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PO iFig. 9.20 aw 92, the pole locations for various frequencies were
obtained on use of rehams (9.48) though (9.50). The results for the fint higher
mode (N-1) are presented in Fig. 9.22. Te pole locations are shown corresponding
to a very wide frequency range, from 13.5 GHz down to 1.0 0Hz, where the points are
nmmbered to permit identifk-ation with the corresponding frequencies. We first note
that mts of the pole locations lie between the furthest steepest-descent path (SDP +)
and the original path P (see Fig. 9.15), so that those poles ae captured. This plot
therefore proves that when the higher modes possess complex wavenumbers those
solutions correspond to leaky modes that are indeed physically realizable and that do
contribute to the field.

We further see from Fig. 9.22 that for the lower frequencies the trajectory of pole
locatiois rises steeply and becomes essentially vertical; this behavior is a consequence
of a/k 0 becoming much greter than O/k.. For sufficiently low frequencies (here for

f<5.0 GHz), the poles lie oni the other side of the SDP + curve, so that they are no
longer captured and therefore cannot contribute to the field. Finally, by comparison
with Fig. 9.17, we observe thit for frequencies between about 11.5 GHz and 5.0 GHz,
the pole locations lie outside of the lined region in Fig. 9.17. The leaky mode for this
frequency range does contribute to the field, but corresponds to a very rapidly
decayirg wave (decaying by at least Ile in a travel of about a sixth of a wavelength).
As explained in subsection 2 above, contributions from these poles are generally
negligible compared to thos.-- from the poles lying in the lined region of Fig. 9.17,
which in Fig. 9.22 corresponds to the frequency range from about 11.5 GHz to about
13.5 GIz, near the onset of leakage for this mode.

We next consider the N-2 and N=3 higher modes to determine if they contribute
in a significant manner to th- field in the frequency range for which the N= 1 higher
mode i complex and important. The behaviors in the steepest-descent plane for those
modes are presented in Figs. 9.23 and 9.24. Their pole locations are plotted for the
same rnge of frequencies a. that appearing in Fig. 9.22 for the N a I mode, namely,
from f 13.5 GHz down to 1.3 GHz. The first feature to note is that the poles already
lie on an essentially vertical line in both plots, because the values of a/ko (see Fig.
9.20) we all so high in this frequency range. The second principal feature is that for
the N = 2 higher mode most (of the pole locations lie above the SDP + curve, and that
for the N-3 higher mode all of them do. We therefore see that the N=3 higher mode,
which is the next higher mod. of the same symmetry as the first higher mode (N = 1),
does not contribute at all to th' field in this frequency range.

i ' ... ... - 1 l "I III I I M
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For the N -2 higher mode, we see that the pole is captured for some frequencies,
but not for most. Even for those poles that are captured, however, corresponding to
frequencies greater than 11.0 GHz, the poles for the N -I mode occur much closer to
the -0 axis. We thus find that the captured poles for the N-2 mode are located far
away from the lined region in Fig. 9.17, so that they decay extremely rapidly and could
contribute only over a very short distance. Compared to the N- I values, therefore,
they can clearly be neglected.

From the steepest-descent plots presented above, we conclude first that the leaky
N= 1 mode does indeed contribute to the field, and second that the other higher
modes contrbute negligibly, when they do at all. These were the two points we set out
to determine in this section. It is therefore correct to assert, as we speculated earlier,
that the uradiation" region may be represented in a highly convergent fashion by
essentialy a single leaky mode.

b. The Boukamp-Jansen Sincture with a Covered Top

The structure treated in this subsection differs from that considered above only in
that this one has a covered top whereas the one above has no top. The values of a/k o

and 1/k for the structures uith and without a top are only slightly different from each
other, and comparisons bet%%een them were illustrated in Fig. 9.11. The nature of the
radlahon from each is quite different, however, since power leaks from the covered top
structure in surfae wave form only (when the dimensions are those chosen by
Boukarnp and Jansen [281) whereas that from the open-topped structure is primarily
in space wave form. Th di.tinction becomes of vital importance when the steepest-
desceni plot Is employed, especially near the onset of leakage.

When leakage occurs in .surface wave form, the relevant plane is the .= plane, not
the yz plane, as shown in Fig. 9.3 in Sec. B. A two-dimensional representation is still
possible, however, when it it recognized that the equivalent of the free-space
wavenumber is k., the surfa e-wave wavenumber. All expressions relating a and 0 to

€, such as (9.42), (9.46) through (9.50), and (9.52), must be appropriately modified;
whenever ko appears, it should be replaced by k,.

With this simple but essential modification, the steepest-descent plane correctly
reflects the onset of radiation and the separation between bound and leaky solutions.
The steepest-descent representation for the N-I (first higher) mode on the
Boukar.p-Jansen structure with a covered top is presented in Fig. 9.25. All of the
numerical data for a and came from their paper [28], but we transformed these data
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into appropriate steepest-dcent form. Results are shown for both the leaky mode
range (the numbered points) and the bound mode range (the lettered points). As they
should, the bound mode soltions lie on the vertical line -, r/2 and have negative
values of ; they are "proper" soluto-v, and the ine =w/2 corresponds to the
boundary of strip T, (see Fig. 9.14). The leaky mode solutions again appear in strip
B 1 as "improper" solutions, but, for all the frequencies shown, the poles lie below the
SDP + curve and are therefor e captured when the original path P is deformed into the
SDP + curve. It is therefore clear that the leaky mode indeed represents the
"radiation" region whether the radiation is in surface-wave form or in space-wave
form.

c The Menzel Aenna Stmcture

The microstrip line cross-section dimensions chosen by Menzel 1271 for his
antenna are h - 0.794 mm, w - 15.00 mm, and er - 2.32. The structure is of course
completely open at the top. These structural parameters are quite different from
those selected by Boukamp and Jansen; Menzel's strip is much wider and his dielectric
constant is much smaller. It was therefore considered worthwhile to see what
differences occur in the steepest-descent plots for parameter values that are so
dissimilar.

Values of a/k0 and i/k o as a function of frequency for the first higher mode are
presented in Sec. E,2; they will not be repeated here even though the frequency range
covered now is somewhat wider. The pole locations in the steepest-descent plane for
this N;, 1 mode are shown irt Fig. 9.26 for both the bound mode range and the leaky
mode range. As in Fig. 9.25, the bound mode poles are located on the vertical
Or - /2 axis, and the leaky mode poles appear in strip B 1, as in all the other plots.
The use of ko implies that space wave radiation is &ssumed here, as in subsection (a).
(It is understood, of course, t'at for a given frequency only a single pole is present.)

Wh,.n we compare the tvajectory of leaky-mode pole locations in Fig. 9.26 with
that in Fig. 9.22 for the open-topped Boukamp and Jansen dimensions, we note two
important differences. The lirst is that the vertical portion here occurs at a much
smaller value of 0, (approximately 0.05 as compared with roughly 0.15), and the
second is that in the neighborhood of the onset of leakage the 0, values for the pole
locatios are smaller here. In general, the leakage rate for the Menzel structure
seems to be smaller. Also, because the vertical portion occurs closer to the 0, =0 axis,
the polits are more likely to b.- captured, but there is a larger frequency range over
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which the poles correspond to waves that decay extremely rapidly, and are therefore
not very meaningfuL Menzel operated his structure as an antenna at f - 6.70 GHz,
corresponding to point 5 in Fig. 9.26, for which 0, =0.7. By reference to Fig. 9.17,
frequencies for which the mode does not decay excessively vary from about 5.6 GHz
to RbQut 8.2 Qiz.

Steepest-doscent plots for the N-2 and N-3 higher modes for the Menzel
antenna dimensions are given in Figs. 9.27 and 9.28. It is interesting to see here that
the pole locations are now such that the poles are much more likely to be captured,
and in principle, to be able to contribute to the field. In part, this feature is related to
the above-mentioned observation that the vertical portions for the Menzel structure
occur much closer to O-0 xis. The poles that are captured, however, generally lie
far away from the lined region in Fig. 9.17, so that they all decay extremely rapidly and
are therefore not likely to con tribute to the field in any significant way.

We found in subsection (a), for the Boukamp-Jansen structure without a top
cover, that the higher modes (beyond the first higher mode) would contribute
negligibly to the field and thitt, in fact, for most frequencies the poles would not even
be captured. Here, for the Menzel structure, the poles would for most frequencies be
captured, but the waves they represent would decay so rapidly that at most they could
yield some wide-angle background radiation. It seems, therefore, that for most cases
it is sufficient to consider only the first higher mode, but one should also keep in mind
that the next higher modes .;ould perhaps, under some circumstances, furnish some
small contribution to the radiation pattern.
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L INVESTIGATIONS RELATING TO MENZEL'S ANTENNA

1. Description of Menzel's Antenna

Based on good intuition but incomplete scientific understanding, W. Menzel [27]
proposed, designed and measured an antenna that consisted of a short length of
microstrip line fed in its first higher mode and operated near to its "cutoff." Although
it was not operated in optimum fashion, it performed reasonably well. It is of interest
because of its structural simplicity.

As a result of the current investigations, we are now sure that the structure is
basically a leaky-wave antenna. Menzel made the structure short because he conceived
it as a traveling wave competitor to a microstrip patch antenna. In the next
subsection, we analyze the performance of his antenna in leaky wave terms, and we
show why it behaved as well as it did despite its short lcngth, and why, from a leaky
wave viewpoint, its performance would be improved if it were made longer. In this

subsection, we summarize the properties of his antenna and indicate the theoretical
approach that he used.

The cross-sectional shape of his antenna is of course that shown in Fig. 9.1. The
aspect ratio of his antenna is unusually flat, with parameter values h = 0.79 nun, w =
15.00 mm, and er = 2.32. The antenna length is 10.00 cm and the operating frequency

he chose is 6.70 GHz, so that the length becomes 2.23,X0 , which is very short for

customary leaky-wave antennas, where we expect lengths of 20 to 40 free-space

wavelengths.

In his theoretical approach, he assumes that the propagation wavenumber kz of

the first higher mode is purely real but with (<k o and above cutoff. He calculates a
value of P based on this assumption, and then further assumes that the field along the

strip length has constant amplitude. The aperture distribution therefore has a
constant amplitude and a traveling wave phase. From this aperture distribution, he
computes a theoretical radiation pattern that appears to agree reasonably well with his
measured radiation pattern. The comparison, in terms of amplitude rather than
power, and plotted in polar form, is shown in Fig. 11 of his paper [27], and is
reproduced here in Fig. 9.29 the same size as in hk Paper.
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m-

Fig. 9.29 E.xperinental and theoretical far field (amplitude)
patterns presented by W. Menzel as Fig. 11 in his
paper 1271, reproduced here the same size. The
antenna parameters are: -, 2.32,h-O .794tur, w
- 1.SO0 cm, L - 10.00 cm, andf/ - 6.70 GHz.

Because this figure is so small, we made a copy double in linear size.
Unfortunately, due to printing and copying distortions, the origin is not precisely
centered and the vertical and horizontal axes are slightly unequal radially, making
reproducibility and accurate comparison difficult. Our best estimate for the angle 9,,

of maximum radiation for Mc nzel's experimentai curve is 40°± 3O, as measured from
broadside (his 9 is the complement of ours). The estimate is made more difficult by
the fact that his experimental curve is somewhat distorted and seems to have a flat
top. The 3 dB beam width of the experimental curve is estimated to be s ,0 - 280±30.

His theoretical curve is shown dashed in Fig. 9.29, and is seen to be shifted slightly
closer to broadside. An expression for that theoretical curve is given by Menzel as the
H-plane portion of his Eq. (2), based upon his Eq. (1) and consistent with the aperture
distribution discussion above. The value of /3/k0 needed in that expression, taken

from the curve in his Fig. 4 and found to be 0/k 0  0.645, is then inserted into his

expression (2) to yield that daihed curve in Fig. 9.29. From our calculation, which is
more accurate than the dashe:d curve itself in Fig. 9.29, we obtain 9m = 36.2V and
A9 = 26.10° as Menzer's corresponding theoretical values.

The agreement with the measured curve is rather good, considering all the
uncertainties and approximations. Menzer's theoretical value for 9m issigtyl,

but the beam width A0 lies within the experimental uncertainty. We comment in the
next section on why the agreen ent is as good as it is.

The other important feature evident in Fig. 9.29 is the large back lobe, with a
maximum amplitude about 0.4 times that of the main beam, and with the angle of the
maximum approximately equal to - 9. It seems clear that much of the power reaches

antenna parameter are e, - 2.I.3. h- 1- .. .m, I
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the end and that some of that power travels back along the strip, radiating power into
this back lobe. Menzel discusses this point, and onc' of his conclusions is that
I"efficiency is improved using longer lines." We also comment on this point in the next
subsection in the context of leaky modes.

Menzel also discusses other aspects in his paper [27], such as ways to feed the
antenna and measurements on an array of four strips, but we need not consider them.

2. Analysis of Menzel's Antenna in Leaky Mode Terms

Our view of the antenna structure as a leaky-wave antenna provides us with much
additional insight; with this view we are able to explain the performance features of
the antenna and, in addition, to know how to modify the structure to improve its
performance.

As a leaky-wave antenna for which the cross-section dimensions are maintained
constant, the aperture distribution along the strip in Menzers antenna does not have

constant amplitude, but one that decays in accordance with the leakage constant c of
the leaky mode. From a leaky mode analysis of the cross-section, we compute that

fl/k o = 0.661 and a/k o = 3.78x10 at the operational frequency of 6.70 GHz.

Let us first utilize this information to indicate the difference between his and our

aperture distributions, and then, as a corollary, to obtain the power remaining at the

end of the strip and to discuss the back lobe found experimentally. His assumed

aperture distribution is

E (z) = Ae 0Z (9.53)

whereas our leaky wave distribution is

E (z) = Ae'aze -J6z (9.54)

where A is simply a constant. From the exp(-az) factor in (9.54), we see that for a

strip length L of 10.00 cm and a value of a/k0 = 3.7840"2, we have that the

amplitude at the end strip is 0.588 A, and that the power remaining at the end is 0.346
of that which is incident, or about 35%. Thus, about 65% of the power has leaked away
into the forward beam, and about 35% has reached the end of the stip. Two interesting
conclusions result from these numbers:

(a) Despite the relatively short length of the antenna, L = 2.23X0 , almost two-

thirds of the power is radiated away. That is why the antenna works as well as it does.

The large radiated power follows from the fact that the a value is larger than those
usually encountered in leaky-wave antennas.
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(b) Since approximately one-third of the power reaches the termination of the
antenna, and since Menzel states that he did not place a load at the termination, part
of that power is transmitted onward and part is reflected. The reflected portion
produces a leaky wave in the reverse direction, creating a back lobe in the radiation
pattern at an angle that would be the mirror image of that for the main beam. Since
we do not know how much power is reflected at the end and how much continues
onward, we cannot compute theoretically the size of the back lobe; from the measured
curve hi Fig. 9.29, however, a back lobe amplitude of 0.4 means about 16% reflected
power, which may be reasonable.

In connection with the reflected power from the end, Menzel finds experimentally
(his Fig. 14) that the antenna efficiency (meaning the percentage of power radiated)
decreases as the frequency is increased, and that the efficiency is increased when the
antenna length is increased. The leaky wave interpretation, which includes the
concept of a whereas Menzel's viewpoint did not, easily explains both of these
findings. When the frequency is increased, the value of ot decreases, so that less power
is radiated for the same antenna length; then, when the length is increased but the
frequency is kept the same, wnd therefore a remains the same, more power is leaked
away and the efficiency improves.

Since the actual antenna aperture distribution is given by (9.54) rather than (9.53),
which Menzel assumed, we cm compute a more accurate radiation pattern than his by
employing the correct aperttre distribution. His theoretical expression is no longer
valid, however, since it applics only to aperture distributions with constant amplitude.
We need instead to use expqression (2.35), the derivation of which is presented in
Chap. 1I.

Another difference arises, and it is that the value of /ko used by Menzel is not
quite correct He assumed ihat the value of 0 is real within the range in which the
propagation wavenumber must be complex. The actual values for both #/A-, and a/k,
as a function of frequency are shown in Figs. 9.30 and 9.31; the values were computed
from the theory described ir Sec. C,1, employing (9.35) together with (9.21) and its
corollary relations. The gervral shapes of the curves are similar to those in Fig. 9.11
or in Figs. 9.20 and 9.21 over a wider range of frequencies. In Fig. 9.30 for 1/k o ,

however, we have added a dashed curve corresponding to Menzel's calculations; his
numbeis come from his Fig. 4, where we have changed the values from (B/k,,)2 to
13/ko . It is interesting that fo" f = 6.70 GHz, the operating frequency of his antenna,
the difforence between his value and the correct one is small, the values being 0.645
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and 0.661, respectively. For the higher frequencies, his dashed curve and our scuid one
are coincident; for lower frequencies, they differ strongly.

The biggest distinction between the two curves in Fig. 9.30 is conceptual, relating
to the concept of cutoff, which has a strict and sharp significance only when the mode
is lossless and purely bound. When the anticipated "cutoff' occurs in a leaky wave
region, the considerations become complicated, and the "cutoff' degenerates into a
spread-out region which "ends" only when the value of a becomes so high that the
mode can contribute only some small wide-angle background radiation, if anything at
all. These considerations are quantified in Sec. D, in the context of the steepest-
descent plane.

Using our accurate values of a/ko and 3/ko in expression (2.35) for the radiation

pattern corresponding to aperture distribution (9.54), we obtain the amplitude pattern
shown as the solid line in Fig. 9.32, which covers the complete angular range.
Superimposed on this plot as a dashed line is the Menzel theoretical pattern, which is
the same as the dashed pattern in his Fig. 11, except that this plot is not a polar one.
These plots are seen to be very similar to each other, but two important differences
should be noted. The first is that the curves are shifted with respect to each other,
with the peak of the dashed-line curve, corresponding to a constant aperture
distribution (Eq. (9.53)), occurring slightly closer to broadside. The second difference
relates to the minima in the patterns. The pattern based on the constant aperture
distribution has a null (since it is basically a sin xIx pattern), whereas that null
becomes filled in when the aperture distribution has a decaying factor.

To permit a better comparison between the data in Fig. 9.32 and the original
curves presented by Menzel and reproduced here as Fig. 9.29, we replot in Fig. 9.33 in
polar form the data from Fig. 9.32. It is seen that our more accurate data appear
closer to the Menzel experimental data (from Fig. 9.29) than do the theoretical values
of Menzel, but the two theoretical curves agree rather well, as noted above.

In order to obtain a more accurate comparison between the two patterns with
respect to Om and A 0, however, we replot in Fig. 9.34 the portion near the peaks. We

then find the following:
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Menzel's Theory Our Theory Experiment
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A8 = 25.90 A# = 26.5°  W0 = 28° t 3*

It is seen that the theoretical values of AO differ by only about 1/2, whereas those for
Sm are about 1 apart. This distinction can be observed directly from Fig. 9.34, where
the two curves appear primarily to be shifted with respect to each other. One also
sees more clearly now that our theory produces results that are slightly closer to the
experimental values.

It was pointed out above that these two theoretical results differ in two ways: the
different aperture distributions, and the different values of 3/ko . At this stage it is not
clear which of these two ways is the more important. To help us in that assessment,
we have also computed the pattern that results when we assume the accurate value of
$/ko(-0.661) together with a constant aperture distribution. The result is

illumInating; it shows that the major part of the discrepancy between the two curves in
Fig. 9.34 is due to the inaccurate value of 0/k, rather than the shape of the aperture
distribution. The new values of Om and a$ obtained from this third calculation are

Om - 37.1° and AO - 26.3. The angular shift between the two curves in Fig. 9.33 or
Fig. 9.34 effectively disappevrs when the correct value of 3/k o is employed, and the

Af discrepancy is reduced, but the beam width is still slightly larger and the sidelobes

are somewhat higher when tie exponentially decaying aperture field is utilized.

3. Parametric Dependences for Antenna Design

We must know the parametric dependences for a given structure in order to know
how to design that structure as an antenna. First of all, we must determine if it is
possible to change some par:uneter so that the leakage rate a can be modified while
simultaneously keeping the phase constant P essentially the same. If that can be done,
then it is possible to taper the value of a to achieve a specified aperture distribution in
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accordance with some sidekibe requirement on the radiation pattern. If that is not
possible, we must then keep the dimensions constant along the length, and be satisfied
with the paterns that result from an exponentially decaying aperture distribution.
One cannot then modify the sidelobe level or distribution, but at least clean narrow
beams are achieved. If tapered aperture distributions are feasible, it is necessary to
know the parametric dependences in more detail, but in either case one has design
control only if it is known what effects are produced by various dimensional changes.

With these microstrip lire leaky-wave antennas, the only parameter that can be
varied easily along the antenna length is the strip width w. The other two parameters,
the dielectric height h and the dielectric constant c,, cannot be altered easily along the
antenna length but their values can be specified beforehand in the design. The strip
width, however, can be readily specified as a function of distance along the antenna by
lithograp" - other means. Let us therefore consider that parameter first.

0 -, P/ko and a/k as a function of strip width w over a wide range of
withs are presented in Figs. 9.35 and 9.36, respectively. The indicated points
correspond to the value of w in Menzel's antenna. The curve shapes are broadly
similar to those seen in Figs. 9.30 and 9.31, where the abscissa is the frequency. The
most important feature about the curves in Figs. 9.35 and 9.36 is that, when w is altered
to change the klaUge constant a, the phase constant 3 changes as welL We are thus
forced to the unfortunate conclusion that we cannot taper the antenna apertre
disfribuion, since different portions of the aperture would then point the beam in
different directions. The cross-section dimensions of these leaky-wave strip antennas
must therefore be maintained constant along their lengths; as a result, they will possess
expoweniaUy decayih aperture distributions, given by (9.54), for which the resulting
radiation patterns can be computed from (2.35).

The variations of j/k o anid a/ko with the relative dielectric conutau e. are seen in
Fig. 9.37; the indicated poitts show Menzel's value for e,. The general pattern is
retained here as weU.; that is, when the value of a/k0 rises, the value of 0/k o

decreaes. The leakage increases as c, decreases, but here again the effect is
qualitatively sialar to what we find when the frequency is lowered or the width is
decreased. The reason is that the electrical length of the transmission line in Fig. 9.7,
corresponding to the region ,inder the strip, is [koc -k2 '/2 w /2, so that all three of
these parameters vary qualitatively in the same way. In Fig. 9.37, the onset of leakage
occurs for e,. about 3.0; if a higher value of er is used, it is therefore necessary to
reduce w appropriately, or to operate at a lower frequency.
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The behavior as a function of dielectric height h is somewhat different, as seen in
Fig. 9.38. Even though h varies over a large range of values, a/k 0 and 6/k0 do not

change as much as when the other parameters are altered; Menzel's value for h is
indicated by the circled points. As f/k o increases, a/ko decreases for larger vdues of
h, as with the other parameters, but for very thin dielectric substrates &/ko decreases
again, as though the mode were being shorted out. These variations with h are more
involved, and depend more heavily on the discontinuity junction itself.

4. Performance When Properly Designed as a Leaky-Wave Antenna

We showed earlier that Menzel made his antenna too short, only 2.23,X° long at
his operating frequency of 6.70 GHz. He wanted to keep the length small to
"compete" with microstrip patch antennas, but, as a result, only about 2/3 of the power
was radiated away and a sizeable back lobe was produced. In addition, the short
length caused a rather large beam width for a traveling wave antenna, but not a beam
suitable for a patch element either. When we view the structure as a leaky-wave
antenna, we automatically select a greater length so as to radiate more of the power
and thereby increase efficiency. Simultaneously, the back lobe is essentially
eliminated and the beam width is narrowed to a more practical value.

A common procedure for leaky-wave antennas is to chose the aperture length so
that about 90% of the power is radiated; the choice is a compromise between
efficiency and excessive length. When we apply that choice to the cross-section
dimensions and the frequency taken by Menzel, we find that the length L of the
antenna becomes 21.7 cm, actually only a bit more than twice the 10.0 cm value
adopted by Menzel. The antenna is still quite short, about 4.84 No, because the value
of a is relatively high.

Since the cross-section dimensions are maintained constant along the length, the
aperture field distribution is exponential y decayng and the analytical expression for
the radiation pattern is provided by (2.35). A linear plot of the normalized far field,
similar to those in Figs. 9.32 and 9.34, appears as the solid line in Fig. 9.39. For
comparison, the dashed line plot in Fig. 9.39 presents the far field behavior obtained if
the aperture field distribution were constant, computed via (2.32). The same 13/k
value is used in computing each of these two plots.

We note first, from Fig. 9.39, that the two curves peak at essentially the same value
of 0, but that the one for a constant aperture field has a slightly narrower beam width.
In addition, the nulls become filled in and the side lobes are a bit higher when the
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aperture field decays. Quantitatively, the O, and A# values for the exponentially
decaying aperture field and the constant one, iespectively, are OM - 40.20 and
AU - 14.00 versus = f 40.3- and AG = 13.4. As compared with the shorter Menzel

structure, S. has moved about 3* away from broadside, which is not much, but the
beam width became reduced from about 260 to about 140, which is substantial

Leaky-wave antennas can, of course, be frequency scanned. We therefore
computed the far field patterns corresponding to two other frequencies, 7.50 GHz and
8.00 0Hz, maintaining the same length and cross-section dimensions and changing
only the frequency. The results are plotted in Fig. 9.40 in polar form, but the sidelobe
information is omitted for clarity. Nothing special occurs in the sidelobes except that
they increase slightly upon frequency scan. The aperture field distribution was taken
to be exponentially decaying in these calculations.

We observe from Fig. 9.40 that the patterns do indeed scan with frequency, and
that the beam widths remain roughly the same. A quantitative comparison reveals:

fin GHz AU

6.70 40.20 14.00
7.50 58.00 16.10
8.00 66.50 16.50

There is a problem here, however. As the frequency is increased, the value of a/%
decreases significantly, so that less power is radiated and antenna efficiency suffers. In
fact, the power radiated at 7.50 and 8.00 GHz become only 54% and 24%,
respectively. Thus, the patte rns look good but the efficiency becomes poor, and back
lobes will be present unless a matched load is placed at the end of the strip. We have
been unfair here, however, because we placed the starting point at the low frequency
end. If instead we scanned in frequency from 6.30 GHz to 7.00 GHz, about a 10%
range, the values for Om would have gone from 280 to 50*, and the radiated powers
would have been 98% and 80% at the two ends of the scan range.

Because a is such a sensitive function of frequency in this structure, we must
chau€ lhe length substantially if we wish to keep the radiated power at 90%. But
then the beam width A$ changes as well. When we change the aperture length L as
well as the frequency, maint.dning the efficiency now at 90%, we obtain the far field
patterns shown in polar form in Fig. 9.41. The angles 0. are now different from what
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they were in Fig. 9.40, and the beam widths A G are of course different. A quantitative
comparison shows

fin GHZ am As

6.70 40.20 14.00 21.7 cm
7.$0 61.10 6.6* 65.6 cm
8.00 74.70 3.4* 215.1 cm

It is therefore possible to achieve fairly narrow beams with these leaky-wave strip
antennis, but only for angles fairly far away from broadside.

To aid in achieving an inproved overall perspective with respect to a potential
design, we include two additional figures, Figs. 9.42 and 9.43. In Fig. 9.42, we present
the strip length L required for the antenna to radiate 90% of the power, as a function
of frequency, when the cross-section dimensions are those used by Menzel. The angle
0, of maximum radiation and the beam width A9 as a function of frequency are
shown in Fig. 9.43. The curves were computed from the simple rule-of-thumb
relations (2.27), (2.28) and (2.29), also presented on the figure. The numbers are not
as accurate for patterns with wide beams, but those for 0, are very good for narrow
beams. The values for A$ depend on the actual aperture distribution. The numbers
on the curve in Fig. 9.43 are based on the simplest form of relation (2.29), which
reflects an "average" tapered distribution; Ad is then given in radians and must be
multiplied by 180/r to yield -he angle in degrees. For an aperture distribution that is
exponentially decaying to 0.10 of its initial power level, one should multiply the simple
expression given for Ad by 0.91; the resulting angles will then be accurate to three
significant figures. The numbers for AG given in Fig. 9.43 are therefore 10% too large
when we are concerned with microstrip line strip antennas that have untapered
geometries.
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X. A NOVEL ARRAY OF PRINTED-CIRCUIT

UNIFORM LEAKY-WAVE LINE '3'9URCES

(With: Prof. P. Lampariello and Mr. F. Frezza
University of Rome, "La Sapienza," Italy)

The array described in this chapter provides a two-d mensional scan capability of
the type discussed in Chap. II and described in detail in Chap. IV, where the line-
source elements are NRD guides. In the present array, the leaky-wave line-source
elements are in themselves new, being a printed-circuit version of what is basically the
offset-groove-guide line-source antenna discussed in Chaps. VII and VIII. It evolved
as a cross between that antenna and the uniform rni.rostrip leaky-wave antenna
treated in Chap. IX. The evolution of the new array, and its principle of operation, are
described in Sec. A below.

The basic theoretical approach employed in the analysis of the new array is the
unit-cell approach explained in Chap. II and applied in Chap. IV. However, the
transverse equivalent network that is representative of this unit cell differs in several
important ways from the on% used in Chap. VII for the offset-groove-guide antenna.
The basic tee junction network utilized there required some fundamental
modifications before it could be used here because, among other features, the cross
secion now contains two different media and includes the periodic waveguide section.
Section B contains the derivations for the elements of this modified tee junction
network; the incorporation of the network into the overall transverse equivalent
network, and expressions for the resulting dispersion relation, are presented in Sec. C.

From the dispersion relation, we obtain numerical values for the array
performance. We first examine the parametric dependences for the simpler case for
which there is no cross-plane scanning. Scanning is then possible in elevation only, but
we study the radiation behavior as various dimensions are changed, and also as a
function of frequency. These important results, which are presented in Sec. D, are
required before any antenna designs can proceed.

The performance of the array when scanning is performed in the cross plane,
resulting in conical two-dimensional scan, is described in detail in Sec. E. Several
interesting and important effects occur during such scanning. 'lcy include the
variation of the leakage rate with the height of the array baffles, possible coupling to
another set of leaky modes, the so-called channel-guide modes, deviation from conical
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scan under some conditions, and the possibility of finding blind spots. Many of these
same effects were noted in Chap. IV, for the array of asymmetric NRD guide line
source.% but interesting differences arise. For both arrays, however, no blind spots
were found, and both are characterized by negligible cross polarization and the
absence of grating lobes.

(After the completion cf this chapter, it was found that the numerical values
presented in this chapter were obtained using a dispersion relation that contained an
error in a factor of 2. The itumerical values for the phase constant are affected only
slightly, but the values for the leakage constant should be 50% to 100% higher than
the ones shown here. All the qualitative behaviors are the same a. those shown here,
and all the conclusions regarding the array performance are completely unaffected.
When the contents of this chapter are submitted for publication, the correct numerical
values will be included. It should be added that all of the equations presented here,
including those pertaining to the dispersion relation, are correct.)
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A. DESCRIPTION AND OPERATION OF THE ARRAY

1. Evolution of the Array Structure

A cross-section view of the array appears in Fig. 10.1. It is seen to consist of a
parallel array of leaky-wave line sources, with each line .ource fed from one end, and
with some imposed phase shift between them to produce the scanning in the cross
plane. As explained previously for the array in Chap. IV, scanning in the elevation
plane is provided by a frequency scan or an electronic scan of the leaky-wave line
source, whereas scanning in the other plane is obtained in the usual phased-array
manner. The combination of techniques produce3 a pencil beam that can be scanned
over a sector of space in a conical scan fashion.

The leaky-wave line sources themselves are new. The motivation for a printed-
circuit form of array arose as a result of the study in Chap. IX, where we obtained a
uniform microstrip line leaky-wave line source that had a particularly simple form,
consisting only of a length of uniform microstrip line operated in its first higher mode.
A linear array of such line sources would be simple in form but less simple to feed. In
addition, it is likely that blind spots would occur as the beam is scanned in the cross
plane; however, these blind spots would most probably be eliminated by the
introduction of metal baffles between the line sources.

After further manipulation of the location of the line sources relative to the
baffles, it became clear that the simplest and neatest arrangement, particularly when
feed problems are taken into account, is the structure whose cross section is shown in
Fig. 10.1. By comparing a line source in the array with the structure in the lower part
of Fig. 7.1, or the upper part of Fig. 7.4, we note that the line source in Fig. 10.1
clorely resembles a printed-circuit version of the offset-groove-guide leaky-wave
antenna. We therefore began with an array of microstrip uniform-strip line sources,
and after a sequence of modifications emerged with an array of modified offset-
groove-guide line sources. In that sense, the array in Fig. 10.1 is a combination of the
two types of line source.

Despite its manner of evolution, the individual line source in the printed-circuit
array in Fig. 10.1 may best be viewed as a flat &e!ectric-filed rectangular waveguide
with an unsymmetrical continuous slit in its top wall. That point of view lends it-3elf to
an easy understanding of the principle of operation, as described immediately below.
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2. Principle of Operation

The individual line source itself is indicated in Fig. 10.2, and we shall now view it as
a dielectric-filled rectangular waveguide coupled by a slit in its top wall to an upper
air-filled stub guide of finite height. Width a must be chosen so as to satisfy two
conditions:

(a) the TE M mode with its vertical electric field in the, dielectric-filled rectangular
waveguide is above cutoff, and

(b) the mode in the parallel-plate waveguide stub region with vertical electric field
is below cutoff.

E

C

d' at d
I I

a1 ZUP

Fig. 10.2 Cross section of the line source employed in the array
in Fig. 10.1.
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When there is no variaiion along the axial direction z (along the slit), these
conditions become

(A/2,v, ) < a < ( X/2)/2 (10.1)

when such variation is present, as in our case, (10.1) becomes modified slightly to
include the longitudinal phase constant A Conditions (10.1) then become

X0/2V\? Ao/2

1,-(,,/k (1 < " < ako.2)

The rectangular waveguide, which is fed from one end, then leaks through the slit
into the parallel-plate stub gide above. The asymmetric location of the slit excites
both a horizontal and a vertical electric field in the stub region. The horizontal
electric field corresponds to a TEM mode that travels up at an angle between the
parallel plates of length c, and radiates from the open end at the top. The second
condition on width a causes ihe mode with vertical electric field to be below cutoff, so
that the radiation into space has essentially pure horizontal electric field polarization.

When the line source in Fig. 10.2 is operated individually, its radiated beam can be
scanned in elevation either by changing the frequency or by modifying the value of 1
by electronic means. The angle 0,, of the beam maximum is given by 3/ko and the
width of the beam in elevation is proportional to a/k0 ; simple expressions that relate
these quantities are given in C hap. 11 as (2.27) to (2.29). Although the beam is narrow
in the elevation plane, it is of course wide in the cross plane. Arranging the line
sources in the form of the array shown in Fig, 10.1 will narrow the beam in the cross
plane In proportion to the rumber of line sources in the array. If phase shifts are
introduced between each line source, the beam will then be scanned in the cross plane,
and therefore in azimuth, in proportion to the phase shift. The arrows n Fig. 10.1
indicate a typical beam scan due to this cause.

It should also be noted that the second of the two conditions on width a eliminates
any grating lobes with respet to scan in the cross plane. To be completely accurate,
that condition should also include the phase shift itself. If the phase shift per unit cell
is k opa, then the fblly accuirate expression is given by (2.8) of Chap. 11, which is
repeated herc for convenience:
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a < I/(10.3)
S+ (k Ik)

for grating lobes to be avoided.

The structure in Fig. 10.1 would be neater and simpler if the stubs wcre not
present. The antenna would then still radiate, but the radiation would be cross
polarized. In addition, there would very likely be blind spots present in the array
application. With the stubs present, however, our accuirate analysis indicates that
no blindness effects occur. The stubs are a structural nuisance, of course, but they
serve to eliminate both cross polarization and blindness problems. It is highly likely
that the introduction of such stubs into other forms of phased arrays (where scanning
in both planes is obtained using phase shifters) would also produce both benefits and
thereby improve performance.

If the slit were centered within width a there would be no radiation. Small shifts of
the slit off center result in small leakage rates, whereas larger shifts result in larger
leakage per unit length. Since the width of the radiated beam is directly proportional
to this leakage rate, we have available a very simple mechanism to control the beam
width. Furthermore, the beam width can readily be varied over a wide range by
simply changing the location of the slit within the width a . The structure therefore
yields versatile performance in addition to pure polarization, no grating lobes, and no
blind spots.



- ,31* -

B. DERIVATION OF THE EQUIVALENT NETWORK FOR THE CONSTITUENT

TEE JUNCTION

In order to obtain numerical information regarding the performance properties of

the array of printed-circuit line sources under scan conditions, we need to determine

the transverse equivalent network for the array structure, and from the network to

derive the dispersion relation for the propagation characteristics. A key constituent of

the required transverse equivalent network is a representation of the tee junction

formed by the asymmetrical slit that couples the lower dielectric-fiUed region and the

upper air-filled stub guide. The same geometric form occurs in the individual line

source (Fig. 10.2) and in the array (Fig. 10.1). That constituent E-plane tee junction is

shown in Fig. 10.3.

a d'+d+ a'=a

d' a' Y

zup

Fig. 10.3 The constituent tee junction that appears in the cross
sections of both the line source in Fig. 10.2 and the full
array in Fig. 10. 1.

This tee junction is similar 'n a basic way to the tee junction that is a constituent of

the offset -groove-guide antenna treated in Chap. VI1. That constituent tee junction is

seen in Fig. 5.2 of Chap. V, and the equivalent network representation for it is the one
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shown in Fig. 5.3, and discussed in detail in Chap. V. Its incorporation into the

transverse equivalent network for the offset-groove-guide antenna is exhibited in Fig.
7.4 of Chap. VII. Despite the basic similarity between the tee junctions in Fig. 5.3 and
Fig. 10.3, the one in Fig. 10.3 differs from the other one in several important ways.
First, the main guide portion in Fig. 10.3 is dielectric-filled; next, the aperture is not
wide open, but contains a slit; and finally, the slit L not centered. The added
complications in the structure in Fig. 10.3 require a series of detailed considerations
with respect to whether or not the equivalent network in Fig. 5.4 can be modified
appropriately so as to be valid for the structure in Fig. 10.3. It turns out that such
modifications can indeed be made, not rigorously but to a high degree of accuracy.
The reasoning followed, and the derivation of the modifications, are presented here.
The resulting network is then incorporated into the transverse equivalent network for
the array in Sec. C.

In the discussion below, the series of considerations involved in !he derivation of
the final network parameters is treated sequentially.

1. Can the Network Form be Symmetrical?

The first problem relates to the form of the equivalent network. Can it be
symmetrical, even though the structure is not symmetrical, that is, the parallel-plate
stub guide is located asymmetrically with respect to the "center" plane T (see Fig.
10.3)?

Let us examine the effects of antisy'nnetric and symmetric electic field
excitations in the main guide portion of the tee structure. First, for antisymmetric
excitation tht plane T would become an electric wall, or a short-circuit plant, as
indicated in Fig. 10.4. The position of the stub guide (moving it over or not) would not
change the character of that electric wall because the "TEM mode at an angle" that
propagates in the stub guide has its electric field perpendicular to that plane. The
effective susceptance of the coupling slit will change if the stub guide is shifted over,
but nothing else will be affected. (We are, of course, assuming that only the lowest
mode can be above rutoff in the stub guide.)

We neAt examine the effects due to symmetric electric field e.rcitation, as shown in
Fig. 10.5. The plane T then becomes a magnetic wall (open-circuit plane) due to this
excitation. An inspection of the field components in the center of the slit region
reveals that the Hz components (along the slit), due to the excitation from opposite
sides, will cancel, whereas the H. components (across the slit) and the EY componcnts

will add. Neither of these two components, however, will couple to the dominant



° 3/u-

- E

EJ: E E 4 I fRE
I TI

Fig 10.4 The effect of and. Fig. 10.5 The effect of syrmnet'ric
symmeoric electric field electric field excitation
excitation in the main in the main guide of
guide of the tee the tee junction in Fig.
junction in Fig. 10.3; 10.3; plane T becomes
plane T becomes an a magnetic wall, or
electric wall, or short- open-circuit plane.
circuit plane.

mode in the stub guide, since these components are orthogonal to those of that
dominant mode. The first higher mode, which would be excited, is below cutoff.
Thus, this excitation does not produce anything different from what it would if the slit
were centered, except for some modifications in the higher mode content of the slit
susceptance due to this excitation.

Because of the simple nature of the dominant mode in the stub guide, we have
here a situation that permits us to employ a symmetric form of equivalent network to
characterize a special type of asymmetric tee junction, provided that the expressions
for the network elements correctly take the stub guide asymmetry into account.

The network form is basicadly the same as that in Fig. 5.4, but it is phrased now, in
Fig. 10.6, in a slightly more complicated form because of the derivations below. We
must obtain expressions for all of these network elements, and we will attempt to use
the results we derived earlier iii Chap. V wherever possible.

2. How the Dielectric Filling in the Main Guide Is Taken Into Account

The main guide portion cf the tee junction is filled with dielectric material of
dielectric constant er, and our second problem is how to take this fact into account in

some simple way, or ways, so that we do not have to reevaduate the various
susceptances. Some approxi i ations are required, but we must also assess how
important they are.
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.1 b

BL

Xas ] ]Xas

T T

Fig. 10.6 The equivalent network form that is used to represent
the constituent tee junction in Fig. 10.3. The form is
symmetrical even though the structure is not because
of the reasons given in the text. The elements X. and
X4L are utilized in reactance form to aid in the
derivations to follow.

Since the network parameters are related to the type of main guide excitation, we
treat the two basic excitation types separately.

a. Symmetric Magnetic Field Excitation

We begin with the symmetric magnetic field excitation case (SH case), which is of

course the same as the antisymmetric electic field excitation case. An electric field is
excited directly across the slit, as seen in Fig. 10.4, and this slit field will in turn excite
higher TM modes in the main guide section (and in the stub guide portion as well).

A short-circuit bisection of the network in Fig. 10.6, corresponding to this field

excitation, yields a two-port network with a shunt susceptance equal to

L ;- - - - . - - -- -- --- - - - - '- - - - - - - -- ,-- - - - - - - -- ' - - .- - - - -- I I-
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BL + 1/,.)n , 1/(X ,lx2) - 2Bh (10.4)

where the subscript sh signifies "symmetric magnetic". An expression in variational
form for B, is given in symbolic notation in (5.6) of Chap. V; more explicitly, it is

Bsh jiffff hi+ *B M: dSdS'

= 2 (10.5)
0O YO0 f f M-h h M~dS

where

A (X Iz) = ,o x E.1, (10.6)

1 (1) (x,z) coskxx (10.7)

and the z dependence in both M.. and h is exp(kzz). The integrations are over the

slit in x and per unit length in z, and x and y begin at the center of the slit. The
Green's function dyadics.B andpB correspond to the main guide and the stub guide,

respectively.

These Green's function dyadics are proportional to the sum of the higher modes in
each of the two regions, in the form

_ .£ (10.8)

where the h terms are the mode functions for the higher modes in each region, and

Yn represents the higher mode characteristic (or modal) admittance for mode n. As
long as the waveguide cross section is filled with dielectric material or is empty, the h
terms are independent of the dielectric constant c,. The Y,, terms, however, do

depend on c.

We wish first to consider BL for the main guide, which is filled with dielectric

material. Since, for symmeti ic magnetic :eld excitation, the higlwr modes excited in
the main guide are TM mode:-, Yn takes the form nI

- I I-~-- I ~ I I I I I
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kv M (10.9)

Since only higher TM modes are excited, the er factor will multiply every term in the

sum in (10.8), and it can therefore be taken out of the sum. We may therefore write

(B1 ), e , ),=i (10.10)

For the main guide portion of Bh /Yo, therefore, we have

[ (Bsh/Y 4 ,)L ], =r ( (Bs,/Yo)L ],o(10.11)

where the result for cr = 1 is what we have used previously, as in (7.2) of Chap. VII, for

example. The explicit expression then becomes

2

[tt ~+- ] J [t -+ J, +_(b[ (10.12)

where

sinksa'/2
nc - k.a'12 (10.13)

which is the same as (7.3). The various dimensions are indicated in Fig. 10.3.

It is important to recognize that two approximations have been introduced into the
reasoning above. The first is the implicit assumption that the aperture field remains
the same when the dielectric medium is inserted into the main guide region. The field
does actually change slightly, but for variational expressions, as used here, the effect of
the change should be minimal.

The second assumption is that I kAn I in (10.9) is independent of cr for all higher
modes. Actually, I k= I is given by

2 2 1/2IkriI= - r (10.14)

2= 2 2where = k, , +kz in the main guide parallel-plate region. For modes with very
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2 2 =n/,wihi etil
high values of n, k; >> ko c,, so that I k n  k k = n 7r/b, which is certainly

independent of er. But, for the first few higher modes, kt2 is not much greater than
2koer , and the I km I values for these modes may be slightly dependent on c, . The

error in (10.11) is expected to be small.

For the stub guide portion of BSh we do not multiply by e, because the stub guide

region is air-filled. As an additional consideration, the stub guide structure used in

Chaps. VI and VI1 resembles that in Fig. 5.1 (or Fig. 5.2), whereas the one we employ

now, in Fig. 10.3, is of the rype in Fig. 5.4. The contribution to Bsh from the stub

guide in Chapa,. VI and VII was therefore taken to be zero, but now it is clearly finite

and non-negligible. In fact, it can be taken from a result appearing in the Waveguide

Handbook [8], as described in Chap. V; the contribution is derived later in this section.

b. Symmetric Electric Field Excitation

We next consider the effect of symmetric electric field excitation, which produces a

magnetic wall at T in Fig. 10.5, with E and H present at the midplane of the slit.

This excitation produces only higher TE modes in the main and stub guides, in contrast

to the previously considered excitation, which created only higher TM modes.

This excitation corresponds to an open-circuit bisection of the network in Fig. 10.6,

and it produces a one-port termination, of reactance

x = x + x i~
s e = aL asX (10.15)

where the subscript se means, "symmetric electric". The expression in variational form

comparable to (10.5) for BA is

j(F((M . +B) dSdS-

i-' = iff M 2)ds 12 (10.16)

where

M'se (xz ) Yo X×-Etit (10.17)

h= /i sink x (10.18)

The other comments made after (10.7) are applicable here as well. It should be added
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that XA/Z 0 is the same as the negative reciprocal of Ba/Y o, a fact that will be
utilized below. We use the reactance form now because we wish to consider
separately the contributions from the main guide and the stub guide.

The Green's function dyadics are still of the form ini (10.8), proportional to the
sum of the higher modes. Again, the mode functions are independent of the dielectric
constant cr, so that only the Y terms need be considered. Since the discontinuity
excites higher TE modes as a result of symmetric electric field main guide excitation,
we write for Y

Y =- --j (10.19)

vwhich does rot involve cr explicitly. Therefore, there is no factor of Cr to be concerned
about. Of course, Ik I is stil slightly dependent on E. for the lowest few of these
higher modes, and we should remember that we have made such an approximation.
Within this approximation, however, the contribution to Xe /Z o from the main guide,

which is XaL /Z o , should be the sone whether or not the dielectric is present.
In the derivation of the expression for Ba /Yo ( = /(Xse/Zo)) used in Chaps. VI

and VII, the dyadic Green's functions in (10.16) were each approximated by dyadic
half-space Green's functions. The net effect of that approximation is to neglect the
presence of the nearby walls. The terms. L and.B are thus taken to be the same in

(10.16), and the contributions from each to the total stored power are also the same.
Thus, the expression for XaL /Z o (for the main guide) and that for X /Z, (for the
stub guide) turn out to be identical, consistent with this approximation. In addition,
we showed above that the expressions are essentially unaffected by whether or not the
main guide region is filled with dielectric material. We can therefore write

1

XL/Z o  A/Zo-- 2x e /Zo (10.20)

and

Ba 1
X (10.21)

The fHral expression for Ba /Y o is thus the same as the onie g;.ii tas (7.1) of Chap. V:,
namely,
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B~ [ [ka ~ 2a')
Y 16 b (10.22)

0

The approximation which substitutes the half-space Green's function for the actual
guide Green's function may at first seem severe, but the approximation is a good one
because the aperture field for symmetric electric field excitation is confined primarily
to the region near the slit. In Chap. V, expression (5.3) for Ba /Y, which was derived

employing this approximatioa, is applied to the case of a slit-coupled tee junction in
rectangular waveguide. Table 5.1 presents comparisons between numerical values
computed using (5.3) and measured values for three different slit widths, and the
agreement is seen to be very good.

Lastly, it is sometimes necessary to have available an expression for network
element BL/Y o separately. Since B. /Y is not affected by the presence or absence of

dielectric material in the mai:i guide, we may write

- ~ - (10.23)

where explicit expressions for the two terms on the right-hand side of (10.23) appear
in (10.12) and (10.22).

c. Small Apeiture Calculatior; for Ba / Y

This subsection is a parenthetical one, motivated by the use of half-space Green's
functions in [10.16] for the evaluation of Ba/Y " Since small aperture theory is in part

based on a similar assumption, it is of interest to see what result for B0 /Y , would be

furnished by that theory.

The geometry under conrideration is the lower portion of Fig. 10.3, which consists
of the main guide portion cf the tee junction; the field excitation employed is the
symmetric electric field excit3tion. We shall use the simple procedure summarized in
[46], and the formulas presented therein, in the derivation of the susceptance for this
longitudinal aperture discoitinuity. As a result of the symmetric electric field
excitation, the field components present in the slit are H and E,. The expression for

Ba /Yo then involves only two terms:

0I
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Ba / Y° = wipo Y M1Ihxo hx -u oc rZo Pve.yo eo (10.24)

where hxo and e are the mode functions for the incident dominant mode evaluated

at the center of the slit, Mx and P are the magnetic and electric polarizabilities of the

slit, and Y ( = 1IZ,) is the dominant mode characteristic admittance.
In (10.24) the characteristic admittance Y corresponds to that of the dominant

0
mode, which is a TE mode since the TEM mode is traveling at an angle. We
therefore have

Yo = 1/Z o = k,/,o (10.25)

The polarizabilities are those for a slit of width a'; using notation consistent with that
in (10.24), we write

71'

P1  - (a')2  (10.26)
16

The remaining terms are the mode functions, which must be normalized
appropriately.

Following the notation in [461, we write

e (z) = yoEoe-jk'z  (10.27)

since there is no variation in the y direction. Using (10.27) in the normalization
condition

lb

ffee dydz = 1 (10.28)
00

yields

ey (z) e -jke z (10.29)

and

e,o, e, = 1/b (10.30)
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For mode function hx , which is a bit more complicated, we have from (5) of [46],

Z0 2

hx (z) = -j k'V(z) (10.31)

where k. =Ak is the cutoff wavenumber, and , is subject to the normalization

ff 'dS = 1/k! (10.32)

From (32) of 146], we have

1 -jk, z(1. )k (10.33)

Z

so that h becomes

h1(Z) =(- k - - e (10.34)

on use of (10.25), and we find
2

h .0 ,/1XO = I b (10.35)

When (10.25), (10.26), (10.30) and (10.35) are inserted into (10.24) we obtain

Ba 7r ()2 2  2

- 16 bk z 2-  k (10.36)

In the dielectric-filled main guide parallel-plate region we have

k cr -k 2 =kx2  (10.37)

so that Ba /Y O becomes
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ira (10.38)

Y 8 1 2J
0

We recall that the geometry for which (10.38) is ,alid is only the main guide
portion of the tee junction. Ba /Y o. in (10.38) therefore corresponds to -1/(Xa, /Z,,).

When we utilize (10.20) we recognize that the value for Ba /Yo that is valid for both

the main guide and stub guide contributions is actuall) one-half of that in (10.38),
namely,

B ra- [(ka'i

16h (10.39)

Before comparing this final result with what was derived earlier, we should note
that result (10.38) is independent of cy even though the main guide was taken to be

dielectric-filled. If it were air-filled, then the c, factor in the second term in (10.24)
would be unity, so that the er that appears in both (10.36) and (10.37) would also

become unity. Thus, any influence due to e is removed, consistent with our earlier
conclusion.

Now we wish to compare the small aperture result (10.39) with the variational
result (10.22). We note that they differ only in the added factor J (k a'12) in (10.22),

which accounts for larger slit widths. That factor is an important one that provides
significantly better numerical agreement with measurements in Table 5.1, for
example, but it is interesting that the simple and easily derived small aperture
expression contains all the major dependences, and agrees asymptotically with the
more accurate result when the slit width a' is small.

3. Putting Together the Remaining Pieces

a. The Stub Guide Contribution B. /Y0

Variational expression (10.5) for Bs / Yo consist., of two parts, one i,,zAving BL

the dyadic Green's function for the main guide, and the other based on B, for the stub

guide. The considerations in subsection 2,a concerned only the first part; the
derivation yielded an expression for (BL/Y o +Ba/2Yo) that takes into account the
presence of dielectric filling in the mair guide. It was stated there that the stub guide
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contribution would be considered later, but that in any case it would not be multipled

by c, because the stub guide region is air-filled.

There are two features of concern in this connection. One is how an expression

for B /Y o can be obtained from information already available in the liteiature, aUid

the second involves the fact that the Y values for the main and stub guides are not

the same.

In Fig. 5.4 of Chap. V a slit-coupled E-plane tee junction is presented in which the
upper portion is similar to the upper portion of the structure in Fig. 10.3, the
differences between them bcing the geometry in the direction perpendicular to the
page and the fact that the slit is centered in Fig. 5.4 but asymmetrically located in Fig.
10.3. Those differences, however, do not affect the approach employed to determine
the network parameters. Expression (5.6) is a symbolic representation of (10.5), so
that the numerator in (10.5) represents the stored powers on both sides of the slit,
with the part involving B corresponding to the stored power in the stub guide. It is

then explained in Chap. V, by reference to Figs. 5.4 and 5.5, that the stored power in
the stub guide is essentially the same as that in one-half of a transverse slit in a
waveguide of the same width as the stub guide. If Bs is the susceptance corresponding

to the stub guide portion of 1 I, and if Y is the characteristic admittance of the stub
S1 0

guide, then

BS B1
(10.40)Y 2 Y

0 0

where B 1/Y o is the normali;ed susceptance of the corresponding transverse slit in a

parallel-plate waveguide. Sinice the slit in Fig. 10.3 is off-center in the stub guide, we
require for B, /1 o the normalized susceptance of an asymmetrically located transverse

slit in parallel-plate guide when a TEM mode is incident on it at an angle. That result
is given (with the minor subs.itution of k for 2ir/A ) by equation (la) on p. 218 of the
Waveguide Handbook [8]; incorporating that expression into (10.40) we obtain

B s [n a b I)1 ( .
- - In csc - csc (a'+2d (10.41)

Y 7r 2a 2

using the notation in Fig. 10.-.

We next take into account the fact that the Yo values for the main and stub guides
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are different, and that the denominator of (10.5), which is basically a voltage squared,
is also different from that used in the corresponding expression for Bs/Y 0 . The

denominator of the relation in (10.5) may be written a-s
2

Yo JI ," ("'dS = , 2 (10.42)

whereas the corresponding denominator in an expression for BS/Yo similar to (10.5)

is
2

Yo h- L d', Yos IVs (10.43)

Then, if we carefully break up (10.5) into its constituent parts, we find

B1  (10.44)

where

B Y 1 2j S OS I S

~"S om V (10.45)gmae

since the stored powers (numerators) are the same.

The factor multiplying Bs /Y os in (10.45) can be incorporated into the turns ratio

nc, in Fig. 10.6; it is derived below in the next subsection.

b. The Turns Ratio ncs

The factor that multiplies Bs/Ys in (10.45) includes a ratio of characteristic

admittances and a ratio of voltage terms. The propagating mode in both the main
guide and the stub guide is the same, being a TEM mode propagating at an angle, and
therefore a TE mode. The difference between them is that the mode propagation
direction is horizontal (x) in the main guide and vertical (y) in the stub guide. The
ratio of the characteristic admittances is therefore



- 388 -

= - = -- (10.46)

In the offset-groove-guide antenna, kx =kY Here, because of the dielectric filling of

the main guide, they are different and are given by

k - k 2 (10.47)
x or

22 k- (10.48)
Y 0

The voltage ratio involves the mode functions in both the main and stub guides,
and the form of the electric field in the slit. Combining relations (10.42), (10.43) and
(10.7), we may write

I a'/2

f f Afh-it'drdz

,, o -a/2

(10.49)
Vs I ai2f f Isdz

o -a/2

where

h (1)(x,z) n (z) cos kx (10.50)

Mode function hz for the riain guide is subject to the same normalization as that
shown in (10.28) fore (= ,); following (10.29), we thejefore write for h

(z -jk /z (10.51)

Similarly, but for the stub guide cross section, we have

h (z) = -jk z (10.52)

Both h, (z) and h (z) have Lpits of per unit length in the z direction.
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For simplicity, we assume that the aperture electric field, and therefore All from
(10.6), is a constant across the slit. The same quantity appears in both numerator and

denominator, and the result for V,, /V s is not sensitive to the form of M. This

approximation was used previously in the evaluation (if n in Chap. V, and withCI
success. With this simple approximation, the result for 1,m /V follows readily on use

of (10.50) through (10.52) in (10.49).

When we define turns ratio n in the manner
CS11

2 - (10.53)
cs, ,  0M, IVill

we find, from (10.46) and (10.49),

VT- sin kx a'/2

S - kaj2 (10.54)

Expression (10.54) for nc,3 permits us to utilize the network in Fig. 10.6 in the

most logical and straightforward way. In practice we must work with normalized
susceptances or reactances, which is the way in which they occur physically. To use

ncs,, in the form (10.54) would then require us (and permit us) to employ normalized

susceptances in the equivalent network of Fig. 10.6, rather than the artificial absolute
values for them, which is the customary procedure. Then, we would work only with

normalized quantities, and all the susceptances in the stub guide, including Bs and the

termination on that guide, would be normalized with respect to Yos of the stub guide;

similarly, the quantities BL, Ba , and the terminations in the main guide would be

normalized to YOM of the main guide. The transition between the main guide and the

stub guide is absorbed completely into the ncs term.

On the other hand, since it is customary to employ absolute susceptances or
reactances in equivalent networks, it might cause confusion not to do so. It would be
prudent, therefore, to leave the susceptances in the networks in absolute form, and
modify the turns ratio accordingly. In that case, we would use ncI rather than ncs, I
where that last subscript (n) signifies "normalized." The only difference is to leave out

the ratio of characteristic admittances in the definition for the turns ratio. If absolute
values were to be employed, (10.45) would become
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[Bsh] Bs 12 (10.55)

so that the definition for turns ration is¢5

1 _ _ _l

2 -= 2  (10.56)

Cs M

and nc is found to be

tics= ncs N/ k/ (10.57)

where ncs is given by (10.54).

c. The Complete Nctwork

We are now able to present the final form of the equivalent network for the tee
junction shown in Fig. 10.3, and to present expressions for all of the elements in this
network. The structure itself differs in several ways from the earlier tee junction
employed in Chaps. VI and VII; in particular, the main guide is filled here with
dielectric material, and the slit is located asymmetrically within the stub guide, leading
to the various complications .iddressed above.

The final form of the equivalent network is presented in Fig. 10.7. As explained
above, we have the alternaiive of expressing the network elements in Fig. 10.7 in
absolute form, which is customary, and then using ncs (as given in (10.57)) for the

turns ratio, or employing the normalized form for the network elements and utilizing
n ,as presented in (10.54). We have chosen here to use the absolute form, simply
because it is customary; the alternative may cause confusion.

The expressions for the individual network elements emerge naturally in
normalized form, and that is the way they are summarized below. To use them in the
network in Fig. 10.7, we mu t multiply them by their characteristic admittances; for
example, we must write 5. =(Ba/Yo,,)Yom or Bs =(Bs/Y0o)/Vos. In the

transverse resonance relation, derived in Sec. C,3, we encounter the ratio Y /Ys
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Fig. 10.7 The final form of the equivalent network fc,- the o
constituent tee junction shown in Fig. 10.3.

which is given below and in (10.46). If we used the normalized form of the elements

in the equivalent network, this ratio would not enter explicitly because it is already

incorporated into ncs,, Either way, of course:, one obtains the identical result for the

resonance relation.

Normalized expressions for the various network elements in Fig. 10.7 are obtained

from (10.22), (10.12), (10.13), (10.23), (10.41) and (10.57). Some have been given

explicitly and some not. For convenience, we present al of them in explicit form in

the following summary:
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B- = 1 - - [k, 2 (10.58)

YOM 16 bh 2 o

2

BL [kgb ' b + fkb 1
- -- - -- iIn 1.43 + 2

y 'r ~.~J~ a'J 2 ~ir)

aT a,

+3rb [k TJ;k _ (10.59)

with

sin(k Xa'72)

n k (10.60)

- csc sc (a') (10.61)
Yos

( =n v-/" (10.62)

where nc is given by (10.60).

Y /y,, =k /kx  (10.63)

2 k2 -k2 (10.64)

k =k0 r Z

S22 = k z2 (10.65)
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C. TRANSVERSE EQUIVALENT NETWORK FOR THE ARRAY
OF PRINTED-CIRCUIT LINE SOURCES

When we use the unit-cell approach to the analysis of the array of leaky-wave line
sources, the transverse equivalent network for the aray reduces to a transverse
equivalent network for a single unit cell. The unit-cel approach is described in
general terms in Chap. II, and its application to the array of NRD guide line sources is
discussed in detail in Chap. IV. The analysis here of thc array of printed-circuit line
sources is similar in the main to that employed in (hap. IV, but of course the
transverse equivalent network used is quite different. The dispersion relation is
substantially different as well, in that here the dispersion relation can be explicitly
displayed in an analytic closed form, whereas the analysis in Chap. IV leads via its
mode-matching procedure to numerical results directly.

In the discussion below, we first summarize the relevant unit cell properties, then
obtain the complete transverse equivalent network, and finally derive the dispersion
relation.

1. Unit Cell Properties

In the unit-cell approach, the array is replaced by a single unit cell, where the
space above the array is represented by a periodic wav.guide with phase-shift walls.
When the unit cell is properly characterized, all mutual coupling effects are
automatically taken into account. The unit cell for the array in Fig. 10.1 is shown on
the left-hand side of Fig. 10.8. The lower portion of this unit cell, with metal outer
walls, is the same as the structure of an individual line source of the array, which was
presented in Fig. 10.2. The upper portion of the unit cell, with the phase-shift walls, is
completely different; the radiating open end in Fig. 10.2 is now replaced by a junction
between the parallel-plate stub region and the periodic unit cell with phase-shift walls.

In the transverse resonance that yields the dispersion relation, the transmission
direction in the stub and periodic regions is the y direction. The dominant mode in
that direction in both of these regions is a TEM mode at an angle. In the stub region,
the propagation wavenumber is kyos, where the subscripts o and s refer to "lowest
mode" and "stub", respectively; in the periodic region, the wavenumber is k , where

subscript p means "periodic." In Chap. IV, these wavenumbers were given as k and
yog

kyo[, here we refer to the air-filled parallel-plate region as a "stub", rather than a

guide." Wavenumber kos is then related to the free-spacc wavenumber k° and the
longitudinal (axial) wavenumber kZ by
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ks2 = k 2 (10.66)

where k,( = 0-ja) is the unknown that we ultimately seek in the analysis. A
corresponding expression for the higher modes in that region is

k 2 = k 2 2- (m r/a )2 (10.67)

where m is the mode number of the higher mode. Expreisions (10.66) and (10.67) are
analogous to (4.1) and (4.2).

In the periodic (upper) region, with the phase-shift walls, the lowest mode is a
TEM mode that propagates in the y direction, but at an angle in the z direction due to
leaky-wave scan in elevation, and at an angle in the x direction corresponding to scan
in the cross plane (and hence in azimuth). The wavenumber components in the y and
x directions are k.op and kXOP , respectively. The value of wavenumber k 0op is related
to the phase shift Oc between the opposite walls of the unit cell of width a, which in
turn depends on the phase shift imposed between the successive parallel line sources
in the array. Thus, we may define

-t = kxop a = phase shift per unit cell. (10.68)

When all the line sources are fed in phase, kXOP = 0 and there is no scan in the cross
plane, and therefore in azimuth. In Sec. E below, we use 0 as a measure of the scan

in the cross plane.

As explained in Sec. B of Chap. II, and used in Sec. B of Chap. IV, space
harmonics are created in the periodic region, where each space harmonic in the x
direction corresponds to a mode in the y direction in the unit cell. The n th space
harmonic k T is related to k op by

k,,p = k + 2rn/a (10.69)

and wavenumbers kyo and kyn for the lowest mode and the higher modes in the
periodic region are then given by

k o2 k 0-kxop k (10.70)

and
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2 2 2 2k k -k - (10.71)

from (10.69). From (10.66) and (10.70) we obtain the simple but useful relation
k2 =2 .2

k y=k 2-k (10.72)

Relations (10.69) through (10.72) correspond to (4.3) through (4.6) of Chap. IV.

As pointed out in Chap. IV in the discussion following (4.6), the beam undergoes
conical scan as kop increases from zero. Wavenumber kXO is real and is assumed

given. Using Fig. 2.13 of Chap. II and the relations in (2.9) between the wavenumbers
and angles 0 and ' of the polar c,)ordinate system, we observe that the beam scans in
azimuth (given by 0) and increases in 0 (meaning that the beam approaches closer to
the ground) as kXO increases. When kXO reaches k the beam hits the ground and

all radiation ceases, in accordance with (10.72). The angles at the two extremes of the

conical scan range are related in a simple way, as given in (2.16) or (2.17).

2. Complete Transverse Equlivalent Network

The transverse equivalent network corresponding to the unit cell of the array
shown on the left-hand side of Fig. 10.8 is presented on the right-hand side of that
figure. The difficult portioti of the unit cell to represent in network form is the

asymmetrical slit that couples the dielectric-filled lower region to the air-filled stub
region above it. That represe~ntation in the form of an E-plane tee is derived in Sec. B,
and shown in Fig. 10.7. As seen, it forms the central portion of the transverse
equivalent network in Fig. 10.8; to complete the network, we need only to add the

appropriate terminations.

The terminations on the main guide sections of the tee network are simple, being

only short circuits. The asymmetric location of the slit in the dielectric-filled region is
accounted for by the two diiterent line lengths (d +a/2) and (d +a'/2) in the main
guide arms; the length a'/2 must be added because the network in Fig. 10.7 is valid at
the reference planes located at the midplane of the slit. The expressions for the

elements of the tee network are listed in (10.58) through (10.62). They are given in
normalized form, exactly tie way they would arise naturally, even though the
susceptance elements in the network are shown in absolute form, which is customary.
The characteristic admittances represent TE modes in each line. and their ratio is
presented in (10.46) as
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Yom kx

- k 
(10.73)

where the wavenumbers are related by

k2 = ko 2r" I 2  (10.74)

k 2 =k 2  2  (10.75)

y 
1

The difficult termination to represent is the one shown as Y
0

, together with the

length 6 by which the stub guide length c has been s-hortened. That termination
represents the junction between the stub guide with metal side walls and the periodic
guide with the phase-shift walls, and then the infinite ler.gth of periodic guide beyond
it. The characteristic admittance Y serves as the termination because that line is

Op

infinitely long. The mode in the periodic guide, when k is nonzero, is an LSE or

H )- type mode, and its characteristic admittance is !n the form given by (2.18).
Using (2.18) for Yop together with (10.46) for Yoswe have

(Ic0 -k9/ Pd.0

Y'OS k /(41i

or

Y kYop yos

- (10.76)
OSP

when (10.66) is employed.

The equivalent network representation for the junction between those two guides
was discussed in detail in Chap. IV, where it was indicated that the network was
availabl, in the Waveguide Handbook (Sec. 5.22, pp. 289-292) for the case of normal
incidence (kz = 0) in the stub guide. The required analytic continuation for the case

k. # 0, the changes in notation involved, the modification., in going from a longitudinal
to a transverse problem, and the needed interpretation o the results, are all presented
in Chap. IV. The steps are all simple ones in themselves, but one must be careful and
consistent. Two differences in notation appear between what we employ here and
what was chosen in Chap. IV. The first is that the subscript for the stub guide here is
s , where g waz, uscd there; the second is that the length by which the stub guide length
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c is shortened was d' in Chap. IV, whereas here d' means something else (related to
the offcenter location of the slit) so that we employ 6 instead.

From the detailed discussion in Chap. IV, we may obtain the expression for 6 that
we still require. From (4.14). after changing k Yogd' to kYOS 6, we have

k = 'la2 + sin1 2x'-sin1 -- sin
1+y l 1y

+ S 2(2'; 0,0)- S 2(x'; 0,-y )-S 2(x; 0,y) (10.77)

where

S 2(x';O'b) = . sin n-b n (10.78)

and where y and x' are symbols used in the Waveguide Handbook which here signify
(from (4.12))

ak ak
xop yOS

Y 2r 2ir (10.79)

We now have expressions for all the constituents of the transverse equivalent
network in Fig. 10.8.

3. The Dispersion Relation

Because the elements in the transverse equivalent network in Fig. 10.8 are all in
closed form (S2. in (10.78) converges extremely rapidly), it is possible to derive the
transverse resonance relation, or dispersion relation, in analytical closed form. To
obtain the transverse resonance relation, we first choose as the reference plane
location a plane just below the transformer in Fig. 10.8; then we set equal to zero the
sum of the admittances looking up and looking down from thik reference plane.
Lo oking up, we have

Y = (1/nc ) (j Bs + Y,,) (10.80)

where B. is written as Bs = ( Bs /Y os )Ys' and Y.s is given by

S S ll



- 399 -

. j + (Yo /Yo )cot kyo5 (C-6)

c o 0  (c - 6) + i (Y 0  / ) 
cotk(10.81)

The expression for Bs /Yo appears in (10.61); the k there is now written k o.
Expressions for n$, 1op/Ys, and 6 are given by (10.62), (10.76), and (10.77) through
(10.79), respectively.

Looking down, we obtain

(JBa + YR)("B a + YL
Y = j BL + j 2Ba + YR + YL (10.82)

where

Yn = -j Y ,,cot k (d + a'12) (10.83)

YL = j Y,,, cot lk (d' + a72) (10.84)

and where we write BL = (BL /Yore )Yo , and Ba = (Ba 'Yom)1om. Expressions for

BL /Yon and B a /Y,, , appear as (10.59) and (10.58).

When the normalized forms are substituted into (10.80) and (10.82), Yos and YOM
multiply all terms in Y and Y down, respectively. Then, when YUP and Y do%" are
summed to zero, the ratio Yo0 /Y01l enters as a multiplier of (lines) , in effect
changing nCs to nCsn in accordance with (10.57) and the discussion surrounding it,
when (10.46) is used. We thus see, as expected, that the same result is achieved
whether we use ncs and absolute susceptances or nCsn and normalized susceptances

directly.

Since there are three different regions in the cross section of the unit cell of the
array, the dielectric-filled region at the bottom, the air-filled parallel-plate region in
the middle, and the periodic region at the top, the resulting transverse resonance
relation contains ihree different transverse wavenumbers, k1 , kyos and k . These

O YOI)
transverse wavenumbers are related to each other and to k. and k , the free-space

and longitudinal wavenumbers, respectively, by (10.64), (10.66), (10.70) and (10.72).
The transverse resonance relation can be rephrased in a variety of ways to exclude
some of these wavenumbers and include others. We have found it convenient to
phrase it to contain ko, kc and ko, using (10.70) to replace k with k , since thelop' YI XWp'
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latter is given and is real. Effectively, then, the relation contains only the unknown kx.

The other wavenumbers, particularly k. (= 0 -ja), which is the ultimate goal, follow

simply from the wavenumber relations quoted just above. The dispersion "relation" is

then the transverse resonance relation taken together with the other wavenumber

relations.
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D. PERFORMANCE WITHOUT CROSS-PLANE SCAN

When all the line-source elements in the array are fec in phase, kxo = 0, and the

cross-plane scan angle is zero. The phase shift across the unit cell is then zero, so that

the phase-shift walls reduce to electric walls in view of the electric field direction. The

periodic region then becomes identical to the air-filled parallel-plate stub guide region

that connects to it; as a result, length c loses its meaning, the metal vertical walls

effectively extend to infinity, and the modified unit cell becomes that shown in Fig.

10.9.

00

I

d' a d
I I

Cr

a U

Fig. 10.9 The form to which the unit cell reduces when there is
no cross-plane scan 0) .
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The array is capable of two types of scanning: leaky-wave scanning in elevation,
and phase-shift scanning in the cross plane. The latter produces conical scanning of
the beam, so that the beam moves in azimuth and also gets nearer to the ground in
elevation. When the cross-plane scan is zero, as in this section, the beam is at its
highest position in elevation, and that position can be altered by changing the
frequency or by modifying /ko in some other way. The zero cross-plane scan case

therefore represents the best case for an examination of the leaky-wave properties of
the array. Such an examination is conducted in this section; the modifications in
performance that arise when k is no longer zero are treated in Sec. E.

We present results below for the dependence of the performance on dimensional
ratios in the array cross section and on frequency.

1. Variations with Dimensiona. Ratios

We recall that the angle o7 of the maximum of the beam is given by the value of
P/k O, the normalized phase constant, and that the beam width AO is related to the

value of a/ck 0 , the normalized leakage constant. (See relations (2.27) to (2.29).) We

are therefore interested in the behavior of 3/ko and a/k o as various dimensions in the

cross section are changed. In particular, we wish to know which dimensions to vary so
that 0/ko remains fairly constant while a/k o changes greatly.

The two best candidates to vary in order to modify t/ko strongly are the relative
slit width a'/a and its location in the cross section, measured as d /a, as seen in Fig.
10.9. Let us first obtain the dependence on dia when the width a and then the height b
of the dielectric-filled regioni (which is actually the feed guide region) are varied as
parameters.

We first rresent the variL tions of fi/k0 and a/k° vs. d /a for three different values

of feed guide width a. The curves in Figs. 10.10, 10.11 and 10.12 correspond to values
of a equal to 2.50 mm, 2.25 mm and 2.20 mm, for a frequency of 50.0 GHz. Other
parameter values are indicat,-d in the inset. The curves in Fig. 10.10 for a = 2.50 nim
are the least desirable because the values of a/ko are the smallest and the values of
P/k ° are too close to unity, meaning an angle too close to endfire (for example,
/1/k° = 0.90 corresponds to an angle of 260 from endfire). The behaviors in Figs.

10.11 and 10.12, for a = 2.2- mm and 2.20 mm, are rather similar to each other; we
selected a = 2.25 mm as the guide width for further calculations, but we could just as
well have chosen a = 2.20 mn.
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As expected from similar numerical results for the offset-groove-guide antenna in
Chap. VII, the value of ac/k, varies monotonically and smoothly over a very wide
range of values as d /a is changed. The value of P/k 0 over this range varies only a

little, but we would have hoped for it to be flatter.

The value of feed guide height b in Figs. 10.10 to 10.12 is 1.59 mm, which
corresponds to a 1/16 inch thick printed-circuit board. That height is a very
convenient one, but in Fig. 10.13 we examined the behavior vs. d /a when thickness b
was increased slightly to 2.00 mm. We obscve that, as compared with the curves in
Fig. 10.11, the values of /k,) are flatter, but the a/k0 values are much lower. The

corresponding curves for beam angle B,, and beam width AO are shown in Fig. 10.14

(using (2.27) to (2.29)), where it is seen that O, varies only about 4°or 5' over the full
range of d Ia, whereas AO varies monotonically from zero to a max; mum of about 2.30,
which is not that large. This dimensional combination is therefore useful only for
rather narrow beams. To permit greater flexibility in beam width, and also because it
corresponds to easily available 1/16 inch printed-circuit board, we will stay with b
1.59 min.

The next set of curves varies the slit width a' as the parameter, from a' = 0.40 mm
to a' = 1.30 mm in four steps, corresponding to relative slit width values of a'/a =
0.178, 0.311, 0.444 and 0.578. Figures 10.15, 10.17, 10.19 and 10.21 present the
variations of /k° and a/ko vs. d/a for a' = 0.40 mm, 0.70 mm, 1.00 mm and 1.30

mm, respectively. Figures 10.16, 10.18, 10.20 and 10.22 show how OM and AO vary with

d /a for the same set of a' values. The abscissa scales are the same for each curve;
the curves for larger values of a' therefore cover a smaller range of d /a. Inspection
of these curves shows that, of the four values of a' being compared, the value of a' =
1.00 mm seems optimum, corresponding to a maximum beam width of just over 6.
(These beam widths are obtined for line-source lengths for which 90% of the power
is radiated, consistent with (2.28) and (2.29).)

So far, the abscissa variai ion was for d /a, a measure of the offcenter location of
the slit. We next consider th, abscissa variation for a'/a, the relative slit width. For an
arbitrary choice of d = 0.20 inm, the behavior of 13/k, and a/k o vs. a'la is depicted in
Fig. 10.23. We observe that /k, remains rather flat as a'la is changed from 0.4 to

0.8, and that over this range (if a'/a the values of a/k0 vary monotonically over a wide

range. The corresponding , .haviors for 0 ana AO are shown in Fig. 10.24, where it is

seen that 6,, is indeed flat from a'/a =0.4 to 0.8, while AO varies from about 3.50 to
nearly zero over the same rar ge. The maximum
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value for AO could be increased by simply choosing a smaller value for d, in
accordance with Fig. 10.20.

The last set of dimensional variations involves the ratio b /a, the relative height of
the dielectric-filled feed guide. The dependences of 3/ko and a/k o on b /a are
presented in Fig. 10.25, and the corresponding behaviors of 0m and A0 are shown in

Fig. 10.26. It is seen that varying b /a changes both i3/ko and a/k o simultaneously,
increasing one while decreasing the other. The 1/16 inch printed-circuit board height
corresponds to b /a = 0.707. Making the guide aspect ratio flatter serves to widen the
beam, and also to raise the beam closer to broadside. We have not, however,
examined how the other dependences would be affected by making b /a smaller. We
suspect that they would be more sensitive, that is, 3/ko would be less flat as d /a or

a'la were varied, but we have not checked the behavior.

From the point of view of sidelobe control or pattern shaping, where we would
need to vary a/ko while maintaining 13/k, the same, we find from the above

numerical results that a'la is the best parameter to vary, although d /a is not bad. It
is important to note that both of those dimensional parameters can be tapered along
the line source length by employing lithographic means, which would permit a mask to
deposit or etch away at one time the whole structure on the dielectric interface.

2. Variations with Frequency

The variations of 3/ko and a/k with frequency are shown in Fig. 10.27. There

are three separate frequency ranges, and they are best recognized by looking at the
curve for ,3/ko . For the highest range of frequencies, when f is greater than 56.75

GHz for the set of dimensions given in the inset, the value of #/k exceeds unity,

because the guided wave is then purely bound and not leaky at all. In that frequency
range, we correspondingly find that a/k o =0. This behavior cannot occur for the

offset-groove-guide antenna, discussed in Chap. VII, where the corresponding curves
appear in Fig. 7.12. The slow-wave behavior here is made possible by the presence of
the dielectric material in the feed guide portion.

In the second frequency range, from about 43 GHz (the value is not sharply
defined) to 56.75 GHz, the guided mode is above cutoff, with a fast phase velocity.
The mode is leaky within that range, and the values of a/k o increase monotonically as
the frequency is decreased. Below about 43 GHz the mode goes below cutoff, in the
ihird range. The a/k0 values continue to increase strongly, but the attenuation is now
predominantly reactive rather than radiative. The 13/k 0 curve does not approach zero,
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but slowly turns up again and eventually, at very low frequencies, crosses the l/k o = I

line. It was proved analytically for the offset groove guide in Sec. B,3 of Chap. VII

that such seemingly odd behavior for /l/ko should be expected, and the same bases ai e

applicable here. Similar behavior was found in the case of the uniform microstrip line

leaky-wave antenna, whcre it was shown in Sec. D,3 of Chap. IX that the crossing of

the //k o 
= 1 line corresponds to the condition for which the pole is no longer

captured in the steepest-descent plane and thus can no longer contribute to the total

field,

In Fig. 10.28 sumilar data are reported for a slit that is more symmetrically located,

and therefore !eaks much less. We see that the values of a/k o in the above-cutoff

frequency range are much lower as compared with those in Fig. 10.27, and also that

the 3/k o values below cutoff approach zero more closely at the minimura.

Qualitatively, the performances are similar.

Plots of the unnormalized phase constant ,8 and leakage constant a as a function of

frequency are presented in Fig. 10.29. It is seen clearly that both 0 and a approach

constant values as the frequency approaches zero. Thus, when ,ve divide by ko , which

goes to zero linearly with the frequency, it is evident that the curves for /ko and a/ko

in Figs. 1.0.27 and 10.28 must continue to increase as the frequency approaches zero.

The variations in the values of the beam angle 0m and the beam width &0 as a

function of frequency in the range above cutoff are shown in Fig. 10.30. For , we

observe that the beam angle changes rather quickly with frequency, making frequency

scan in elevation effective for this array. It is possible to cover essentially the whole

angular range by varying the frequency about t 7 GHz, centered at 50 GHz. The

frequency range below 50 GHz seems more attractive because AO varies more slowly

there; we note that we can scan from about 5* from broadside to about 400 in about 5

GHz, or a 10% change. Because of the presence of the dielectric material, however,

we have lost the very desirable property possessed by the offset-groove-guide antenna,

namely, that AO remains constant with frequency. Here, AO is seen to change

substantially with frequency, as we also found for the uniform microstrip leaky-wave

antenna in Sec. E of Chap. IX.

The behavior of OGi and AG vs. frequency for a larger value of d, meaning a lower

leakage rate, is shown in Fig. 10.31. These dimensional values are the same as those

for Fig. 10.28. The 0m dependence on frequency is essentially the same as that found

in Fig. 10.30, but the A9 values are smaller, as expected.
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Moreover, two curves are shown for AG, to indicate that different behavior is
obtained for different methods of operation. The solid curve here, and the curve in
Fig. 10.30, assume that one chooses a length L for the antenna and then maintains
that value of L as the frequency is changed. The dashed curve assumes that at each
frequency the length L is changed so that 90% of the power is radiated at each
frequency. From (2.28) and (2.29), we may write the relations that correspond to the
solid and the dashed lines:

52.1
solid line: AO = (10.85)

a/ko
dashed line: AO = 285 (10.86)

where AG is in degrees in both relations. The value of L/ o to be used in (10.85)

depends on the frequency chosen, sinice L/A. is determined from (2.28) and a/k o

varies with frequency. For the curve for AG in Fig. 10.30, the center frequency of 50.0
GHz was selected, and L /A became 29.7. It is seen from Fig. 10.31 that these two

different ways to compute AO actually produce oppositely directed dependences. The
more meaningful method of operation, if indeed frequency scanning is intended, is the
one corresponding to the solid line.

The last set of curves relating to behavior with frequency is concerned with the
transverse wavenumbers. We consider only the wavenumber in the air region, which is
k in the parallel-plate region with metal walls and k in the periodic region; when
k = 0, corresponding to zero cross-plane scan, they are of course equal to each
other, as explained above. For the offset-groove-guide antenna, we found in Chap.
VII that the transverse wavenumber, although complex, was indeed independent of
frequency. Here there are two different media in the cross section, so that kyop must

be frequency dependent.

The variations of Re k and Im k with frequency are presented in Fig. 10.32.

The values for both the real and imaginary parts are seen to approach constants as the
frequency nears to zero, but to decrease monotonically as the frequency increases,
reaching zero when fO/k o becomes equal to unity, which is the transition between the

fast and slow wave ranges of behavior. For still higher frequencies in the slow wave
region, Re kYO remains zero since there is no leakage, and Im kyo becomes negative,

corresponding to exponential decay away from the air-dielectric interface.
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Figure 10.33 indicates the behavior of kyo /ko vs. frequency. When normalized to

ko , both the real and imaginary parts increase without limit as the frequency

approaches zero, as we would expect. The behaviors of the unnonnalized and
normalized values of k for a different value of offcenter slit location, corresponding

to a lower leakage rate, are given in Figs. 10.34 and 10.35, respectively. It is
interesting to note that the Re kop values, when Figs. 10.32 and 10.34 are compared,
are not much different; similarly for the normalized values. The Im k values,

however, are very different, by almost a factor of three.

The reason for the different behavior becomes clear when we examine the
relations between the real and imaginary parts of k and k . From2 (Rek ~ ~~op jiko)

(-)2 + +jmk (10.87)

we separate the real and imaginary parts, to obtain

2 2 2 2 2ko 0  - a + (Re ) - (limk ) (10.88)

and

q# = (Re k )(Imk ) (10.89)

When k,-+O, ,2>># 
2 and (Re ky 2 >> (Ir ky 2 as seen from Figs. 10.29 and

10.32. Under those conditions, (10.88) reduces to

Re kYop = (10.90)

Employing (10,90) in (10.89) yields
lImk, = (10.91)

) OP

When we compare Figs. 10.29 and 10.32, we see that the ordinate values in each do
approach constant values. By an inspection of the curves we may check relations
(10.90) and (10.91), although more precise values may be found from Fig. 10.32. We
find, for f -+ 0:

Rek =1.48; a = 1.5

Irnk =0.011; 0 = 0.01

The computer output results for a and 0 are 1.479/mm and 0.0111/mm. Relations
(10.90) and (10.91) are therelore very accurate.
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E. EFFECTS OF CROSS-PLANE SCANNING

Cross-plane scanning, and therefore scanning in the azimuth plane, is achieved by
imposing a phase shift between successive parallel line sources in the array. This
phase shift per unit cell, 0c, is defined in (10.68) as

t = k a (10.92)

where a is the unit cell width and kxo is the wavenumber component in the x
direction. When k = 0, there is no cross-plane scanning, and the junction between
the stub guide with metal walls and the periodic guide with ph:'se-shift walls
disappears. As a result, the phase-shift walls become electric walls, and the stub guide
becomes effectively infinitely high, as discussed in Sec. D.

When k # 0, and cross-plane scan is present, the junction between the stub guide

and the periodic guide becomes significant. The larger the phase shift introduced per
unit cell, the bigger is the effective discontinuity due to that junction. Two primary
effects are introduced by the junction discontinuity; the first is that a sanding wave is
introduced into the stub guide region, between the slit of width a' located at the air-
dielectric interface and the above-mentioned junction, and the second is that a new set
of leaky modes is introduced, the so-called channel-guide modes. These channel-guide
modes also occur in antenna structures treated in other chapters of this report, and
have been discussed in detail in Chaps. IV and VII. Due to the standing wave,
subsidiary effects are also introduced, including a small deviation from conical scan
and a variation in the leakage rate as kop is changed.

When the cross-plane scan angle is small, the junction discontinuity is small, so
that the standing wave is mild and the interaction between the desired leaky mode and
the unwanted channel-guide modes is negligible or completely absent. When the
cross-plane scan angle is large, however, all the effects are magnified, and the
interaction with the channel-guide modes must be taken into account. In the
treatment below, we first select two separate phase-shift values, one corresponding to
a small cross-plane scan angle and the other to a large one, to illustrate the
performance differences.

Before we can select the two typical phase shift values corresponding to large and
small scan angles, we must know the value of phase shift that causes the beam to
reach the end of the conical scan range. During the conical scan, the beam begins at
azimuth angle 4 = 0; then, as kop or 't,( increases, 4 increases and 0 also increases,

, i I II I I I I I I I I I Ip
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'y

0 kxkz kx
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Fig. 10.36 Polar coordinate diagram, showing the relationships
between the various wavenumbers and angles 9 and 4.

meaning that the beam gets closer to the ground. When Oc reaches its maximum

value, 9 = 900, 0 is at its maximum value, and all radiation ceases. The relation
between the angles 4 and 0 at the two extremes has been derived in Chap. 11 as

40 = go. = 90 - a 0 0 (10.93)

which is (2.16).

With the aid of the polar coordinate diagram in Fig. 10.36, we see that
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sin O, 0 =kZ/ko =  /ko (10.94)

and

sin 0, . go. -- /ko = kxop ko (10.95)

Combining (10.93) to (10.95), we find for the largest permissible value of kWp

xop /k o = cos (sin' O (10.96)

The value of 0e = 0 is seen from (10.94) to depend on the properties of the leaky-wave

line source, so that the maximum value of kxop will change as the dimensions of the

line-source cross section are altered. It is also a function of frequency.

For a center frequency of 50.0 GHz, and for a = 2.25 mm, a' = 1.00 mm, b =

1.59 mm, and d = 0.25 mm, a typical case for which we have many numerical results
in Sec. D, we know that 3/k, = 0.737. For that value of /ko , we have from (10.94)

and (10.96) that

10 = 0 47.5. and kXO /ko = 0.676.

Sincek o - 1.047/mm at 50.0 GHz, and a = 2.25 mm, we have obtained for the

maximum value of the phase shift per unit cell, from (10.92),

(4C)max = 91.30

for this set of dimensions. When d = 0.40 mm, with all other dimensions the same,
we find that the maximum value of phase shift per unit cell becomes 86.6. It is

therefore reasonable to select 4>C = 350 and 700 as phase shift values that correspond

to small and large cross-plane scan angles, respectively.

In the figures presented below, the numerical values first demonstrate that for
small, but not negligible, cross-plane scan angles (corresponding to OC = 35), a mild

standing wave effect is present but no interactions with channel-guide modes occur.
Next, for Oc = 700, interesting interactions with channel-guide modes are found, and
we indicate how to avoid their influence. Numerical values are also presented for

several quantities as a function of stub guide location d la, showing that the variations
are similar but numerically a bit different, as compared with the case of zero cross-
plane scan. Finally, we examine the performance as a function of phase shift Oc per

unit cell, to show that the conical scan is affected slightly, and that no blind spots
occur.
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1. Small Cross-Plane Scan Angles

The dispersion relation from which the numerical values presented below are
obtained is given by summing to zero relations (10.80) and (10.82), using the various
supporting expressions in that vicinity. The discontinuity appearing at the junction
between the stub guide and the periodic waveguide is accounted fo;: rigorously. That
discontinuity permits the presence of a standing wave in the stub guide region between
it and the slit of width a' at the air-dielectric interface. The extent of that standing
wave and its effect on the phase and leakage constants are illustrated in Fig. 10.37 by
varying the length c of the stub guide.

In Fig. 10.37 the phase shift per unit cell 0C is 35. The azimuth angle 4
corresponding to that phase shift value is readily obtained from the following simple
considerations. From the polar coordinate expression in (2.9) of Chap. II, we write

kXOP = k. sin0sin (10.97)

while we note from the polar coordinate diagram in Fig. 10.36 that

-- sin = k +032] (10.98)

where we have set z = kz.Combining these two expressions, we have
krp /ko

sin =(kx/k) + (3/k°) 2 ]/2 (10.99)

We may therefore compute the elevation and azimuth angles 0 and 0 of the main
beam from (10.98) and (10.99), respectively, once fl/ko is known.

We do not yet know if /ko will change as k increases, but for small values of
kXOP , and therefore small cross-plane scan angles, we may assume for now that it
remains almost the same as its value for k = 0. On that assumption, 8/k o = 0.737

for te set of parameters given in the inset in Fig. 10.37. Furthermore, for C = 35*,
ko0P /ko = 0.259, since k = 1.047/nm and a = 2.25 mm. Using (10.98), we find that

the azimuth scan angle 4) = 19.4", which is fairly small, but not extremely so.
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The variations of the normalized phase constant /ko and the normalized leakage

constant a/ko as a function of the normalized stub guide height c/A are presented in

Fig. 10.37 for phase shift =c 35g. We observe that /ko remains essentially flat with

c /Ao , whereas a/k o undergoes a "periodic" variation with c /Ao, as one would expect

in view of the standing wave we know to be present in the stub guide region. The
period of the standing wave is approximately A3y /2A , but k (=2r/A ) is

complex (and given by (10.66)). A careful inspection of the standing wave pattern in
the curve of a/k o vs. c /Ao reveals that the amplitude of the pattern increases slowly

with c /AO, consistent with the complex nature of k and the improper nature ofyOs
leaky-wave poles for which the field increases to infinity in the transverse direction.

The standing wave is a mild one, consistent with the statement that the
discontinuity is a small one when the cross-plane scan angle is small. For larger scan
angles, the amplitude in the a/k o plot would increase and a similar ripple would

appear in the /ko plot, as was found for the array of NRD guide line sources

discussed in Chap. IV. For still larger scan angles, as is seen later, coupling to
channel-guide modes also occurs.

The angular coordinates 0,, and 0m of the maximum of the radiated beam are

computed from (10.98) and (10.99), using the value of 3/k0 obtained from Fig. 10.37.

Since 1/k o is essentially flat with c /)o, we should expect that m and 0. will also be

essentially independent of c/Ao. These expectations are borne out in Fig. 10.38. We

may also note that the azimuth scan angle 0 is slightly smaller that 20* in close
agreement with the calculation of 19.40 obtained above by assuming that 81/k o does

not change when tc is increased from zero to 35* The assumption seems to be a

good one; the actual variation is shown later for several geometric parameter values.

The slit offset position d in Figs. 10.37 and 10.38 is 0.25 mm. When d is reduced
to 0.10 mm, corresponding to greater offset, or asymmetry, the value of 1/ko changes

a bit and that of a/k o increases substantially, almost doubling. The variations of 1/ko

and a/ko with c /Ao are shown in Fig. 10.39. The qualitative behavior is the same as

that found in Fig. 10.37, but the amplitude of the a/ko variation seems a bit more

pronounced and the /ko curve seems on the verge of oscillating periodically (the

curve is a copy of the actual computer plot, not a tracing of plotted points).

Figure 10.40 is analogous to Fig. 10.38 for nj and 4m vs. c/A 0 9, but for d = 0.10

mm rather than d = 0.25 mm. The behavior is again qualitatively similar; the greater

leakage rate corresponding to Fig. 10.40 seems to raise the beam slightly in elevation
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and slightly increase the azimuth scan angle.

2. Large Cross-Plane Scan Angles

Large- cross-plane scan angles, and therefore large azimuth scan angles, are
produced by introducing larger phase shifts between successive line sources in the
array. For this next set of curves, we have chosen the phase shift per unit cell 4c to

be 700, rather than 35 ° As a result, the junction discontinuity between the stub guide
and the periodic guide is greatly increased. The standing wave effect discussed above
is enhanced, but we now also must take into account the interactions between the
desired leaky mode and the set of channel-guide leaky modes.

The latter set of modes is discussed in detail in other chapters, but we wish here to
point out the principal distinction between these modes and the desired one, that of
the field polarization in the feed guide portion, as shown in Fig. 10.41. The electric
field in the dielectric-loaded region is vertically polarized initially, giving rise to the
horizontally-polarized field in the stub guide and the periodic guide because the
coupling slit at the air-dielectric interface is located asymmetrically. The fields of the
channel-guide leaky mode are horizontally polarized in all of the regions, and are
affected very little by the asymmetry of the slit, as shown in detail in Chap. VII for the
offset-groove-guide antenna. The primary seat of the coupling between the two mode
types is the junction discontinuity between the stub guide and the periodic guide,
which is more pronounced when the phase shift is greater. Of course, the modes will
couple only when both the 3 and a values of each mode type are equal.

a. Variations with Stub Guide Height

The dependence of 1/ko and a/k o on the normalized stub guide height c /A

when the phase shift per unit cell is large is shown in Fig. 10.42. For small values of
c /A0 , we have only the original desired mode, which we call n = 0 in that range. The

channel-guide modes before they couple are designated as n = 1 though n = 6. No
coupling occurs untii c /A0 equals about 2.8, although the presence of the n = 2

channel-guide mode nearby distorts the a/k o curve slightly near c /.\o = 2.2. The first
real coupling occurs between the desired n = 0 mode and the n = 3 channel-guide
mode; we find the usual gap in the 13/k o curves and the cross-over behavior in the
a/k° curves. Since this type of beriavior has been discussed in detail in earlier

chapters of this report, we will not comment on it here.

A new feature is present in Fig. 10.42, however, and it is concerned with the
behavior of the channel-guide modes for lower values of c/,X0 . In the plots in other
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chapters the curves were stopped before they reached this region. Now we have

continued them until the value of c /)o is too small for these channel-guide modes to

remain above cutoff. As these modes go below cutoff, however, their very high values

of attenuation constant cause the turn-around in the /ko values to occur rather

quickly, and their minimum values to be rather large. We believe that this is the first

time that this feature relating to the channel-guide modes has been investigated, or

even recognized.

As to how to use these curves to insure that the mode we are employing is the

desired one and not one of the channel-guide modes, we follow the advice given in

Chap. VII, namely, that we choose only those portions of the curves corresponding to

the flat regions in the l/ko plot.

The corresponding curves for elevation and azimuth scan angles 0m and O, as a

function of c /Ao are presented in Fig. 10.43. Here, again, we must employ only those

portions of the carves that are essentially flat. We then see that the values of 6,, and

qm vary a little when c /A 0 is changed, but not much.

b. Variations with Slit Location

In Sec. D numerical values were presented for the variations of l/k0 , a/k0 and

other quantities with various dimensional parameters for the special case of 0C = 0.

The principal dimensional parameter that was varied was d /a, where d is a measure

of the location of the slit in the guide cross section, and therefore a measure of the

asymmetry. Now, we present numerical results for some of the same variations, but

for the case of 4OC = 70', a large phase shift value, to compare the behaviors.

First, in Fig. 10.44, 3/ko and a/ko are plotted as a function of d /a for the same

parameter values as in Fig. 10.11, except that now c = 1.00 mm instead of being

effectively infinite. When we compare Figs. 10.44 and 10.11 with regard to the curves

for 0/k o , we find that they are very similar. The curves for a/k o are qualitatively

similar, but the values in Fig. 10.44 are roughly 20% higher.

The reason for higher values for a/ko in Fig. 10.44 may be understood by

examining Fig. 10.42. For c = 1.00 mm at 50.0 GHz, we have c /A o = 0.167. At that

value of c/A, the curve of a/k 0 vs. c /A is near to a crest in the periodic variation,

and therefore higher than the average value. If c /A. were chosen to be 0.40, for

example, the curve would be at a trough, and the values of a/k o in a plot equivalent to

that in Fig. 10.44 would yie!d values lower than those in Fig. 10.11.
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As a separate consideration, the value c = 1.00 mm is actualy too small for
practical purposes. The length c must be long enough so that the vertically polarized
component of electric field has effectively d-cayed to zero, !o insure neglig~ble cross
polarization in the radiated beam. We had determined earlier that c/k o = 0.5 is

sufficient. With respect to Fig. 10.42, therefore, one can choose any Vdiue of c/A o

greater than 0.5 or so, but if one wishes to maximize the leakage rate a value of c /
near 0.8 may be selected.

The next curves, in Fig. 10.45, show how the elevation and azinmuth scan angles OMn
and 0,, change as d la is varied. The qualitative behaviors for 0r in Figs. 10.45 and

10.20 are seen to be similar, but the actual values must be different because 6 is
computed using (10.98), and thf, values of ko are quite different for the two cases. A
point on the curves for 6,, and 0km in Fig. 10.45 must agree with corresponding points
on the curves in Fig. 10.43. The points in Fig. 10.43 correspond to c = 1.00 mm, or
c/ 0 = 0.167; those in Fig. 10.45 correspond to d = 0.10 mm, or d/a = 0.044.

Direct inspection of the relevant curves show that the), are in agreement.

3. Variations with Imposed Phase Shift

In the two preceding subsections we presented the behavior of key quantities
under the conditions of small, and then large, cross-plane scan angles. Here we
consider the behavior as we change the scan angle continuously over its whole range.
In the process, we are concerned about two basic features: the extent of deviation
from strict conical scan, and the possible presence of blind spots. As we see below,
the deviation is actually very small, and no bind spots are found.

a. Wavenumber Variations

The quantities [3/k o and a/k° are measures of the leaky-wave behavior, and
therefore of the elevation angle in the longitudinal principal plane (the yz plane, see
Fig. 10.8 or 10.36) and the vertical beam width in that plane. As the beam scans in
azimuth, the elevation angle changes (in keeping with conical scan) and the beam
width becomes modified. As the beam scans in azimuth, the properties of the
discontinuity between the stub guide and the periodic guide change, so that the
termination on the equivalent network representing the unit cell (see Fig. 10.8)
be.,omes modified. As a result, the values of 3/k o and a/k° change, and it is

important to know the nature of these changes.
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In Figs. 10.46 through 10.49 we present the variations of 3/ko and a/k0 as a

function of 0C, the phase shift per unit cell, over the whole range of permissible

values, for four separate cases. From these four figures, certain qualitative features
may be observed immediately. First, the curves ofl/ko are seen to be essentially flat

in all cases. For some, the curves droop down slightly, and for one of them (Fig.
10.47) a sharp change occurs near the end of the scan range, as the beam approaches
the ground. The flatness implies that the deviation from conical scan will be small, as
we shall see below.

The curves for a/k, vs. phase shift are seen to change in interesting ways from one

case to the next, but for all of them it is clear that no sharp dips occur anywhere
during the scan range. (Of course, all the curves go to zero at the end of the scan
range, when the beam hits the ground and all radiation ceases.) The absence of any
drops during the scan range shows that no blind spots occur.

In order to explain why two of the curves for a/k0 rise near the end of the scan

range (Figs. 10.46 and 10.47), while another (Fig. 10.48) remains pretty flat and the
last (Fig. 10.49) drops off, we must determine the specific values of c in each case and
examine, in Figs. 10.37, 10.39 and 10.42, how that value of c corresponds to the crest
and trough nature of the periodic variation with c. In Fig. 10.46, c = 1.00 mm, so that
c = 0.167; in all three of Figs. 10.37, 10.39 and 10.42 that value of c/ o
corresponds to a point near the crest of the periodic curve. As the phase shift
increases, the amplitude of the variation increases (since the geometric discontinuity
becomes more pronounced); thus, a point located near a crest gets pushed higher, so
that the curve for a/k 0 will increase as the phase shift becomes large. Since the stub

guide height is rather small, however, the amplitude increase as the phase shift
increases is only modest; as a result, the rise in a/k. will be small in this case.

* •For the three remaining figures (Figs. 10.47, 10.48 and 10.49), the values of c are
4.80 mm., 6.00 mm and 7.20 mm, so that c/A 0 = 0.80, 1.00 and 1.20, respectively.

Inspection of Fig:;. 10.37, 10.38 and 10.42 shows that for each of these figures the
values c/A0 = 0.80, 1.00 and 1.20 correspond to points near a crest, near the middle,

and near a trough, respectively. From the reasoning above, we would therefore expect
that the curves of a/k o vs. phase shift would show, respectively, a rise, a flat behavior,

arid a drop. The curves in Figs. 10.47 to 10.49 follow our expectations.

'he increase in Fig. 10.47 is sharper than that in Fig. 10.46 because the value of
c /A. for it is closer to the maximum of the crest, as well as corresponding to a higher



.452-

E
E
00

IT - §-

0 4

o E

o 0g

E .

E -

I- -l,
t-11 - I I "I I I I . I

o -l
., C. . .

ILLZS E (

0o _o , .
ci

00
I 11 i1 IL :•

*. V c

0III



- 453 -

E
E

U-),

E

CIV

00 0

c~ci

~~c S \J I J I



- 454 -

E
E

0

ItCIO

E C

%. E0

If E

0 0

Eo~

If E Sx

C> c(0(D 0

0 (~ 0



- 455 -

o (D

U)

E 0.

E

If

InI

00

0

6 Co

0C
E



- 456-

stub guide. The value of c for Fig. 10.48 actually occurs a bit below the middle (or

average) of the periodic curve, and the curve for a/k o in Fig. 10.48 therefore droops

somewhat, though much less than the curve in Fig. 10.49. A slightly smaller value of
c Ao would probably permit the flatness to continue for larger values of phase shift.

We therefore see that we can explain the nature of the variations in these curves,
but, even more, by referring to a curve of a/ko vs. c /Ao we are able to design

beforehand the curve shape of a/ko vs. phase shift.

b. Conical Scan Dependence

As the phase shift per unit cell, cC' increases, the value of azimuth scan angle Om

increases from zero, and that of the elevation scan angle 0 also increases, but the

beam actually drops since OM is measured from broadside. To first order, that is,

when a is neglected, 0, and 0,,, depend only on kXO /k o and 1/ko , and may be

calculated using (10.98) and (10.99). Though approximate, these expressions are
believed to be rather accurate under most conditions in practice.

For the four cases considered in Figs. 10.46 through 10.49, we present the scan
behavior vs. phase shift in Figs. 10.50 through 10.53. The elevation angle is plotted as
90* - 0 , rather than as em directly, to show that this angle goes to zero as the beam

hits the ground at the end of the scan range. The qualitative behavior is similar for all
of the curves for 900 - 6, and for , respectively. Furthermore, since the curves for
,1/k vs. phase shift were found to be rather flat, and since k is linear with the

phase shift, the deviations from conical scan are very small.

The only noticeable deviation occurs in Fig. 10.51 at the end of the scan range. It
is noted that, above 83' or so for the phase shift, a miner bump appears in the curves

for both 90- OM and ,,,, and the scan range itself becomes extended by a few degrees.

Except for these two features, the curves in Fig. 10.51 agree very closely with those in
Figs. 10.52 and 10.53, for which all the geometric parameters except c are the same.
The reason for the different behavior at the end of the scan range in Fig. 10.51 may be
understood from the curves in Fig. 10.47, where one sees that the value of a/ko

increases by more than a factor of three and that the value of /k0 begins to drop

noticeably for phase shift values greater than 830 or so. A drop in the value of 1/k0

should raise the beam in elevation, increase it in azimuth, and extend the scan range.
All three of these effects occur in Fig. 10.51, as compaicd with what we observe in
Figs. 10.52 and 10.53, consistcnt quantitatively with the 3/k) behavior in Fig. 10.47.
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The details of the behavior in the various curves have been explained, but the two
chief points that should be stressed with respect to this subsection on variations with
phase shiit are that no blind spots occur and that deviations from conical scan are very
small.
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XI. A NOVEL ARRAY OF PRINTED-CIRCUIT

PERIODIC LEAKY-WAVE LINE SOURCES

(With: Prof. M. Guglielmi, Polytechnic University)

All of the line sources treated so far in this report are longitudinally uniform, to
comply with the need at millimeter wavelengths for structures of simple configuration.
The line source (and the array of them) in Chap. X went further in that the portion
that controlled the radiation was in printed-circuit form, thus permitting its fabrication
by lithographic means. Such fabrication methods actually allow us to utilize somewhat
more complicated printed-circuit structures if there are advantages involved.

Although longitudinally uniform line sources offer simplicity in structure, they
introduce an important restriction in the scan range available. For the line source
itself, the beam can be scanned in the forward quadrant only, and then in only part of
that. For example, the offset-groove-guide antenna in Chaps. VII and VII possesses
wonderful advantages in versatility of performance, including constancy of beamwidth
during frequency scan, but one cannot approach endfire or broadside too closely, so
that the scan range is limited. The printed circuit version in the array discussed in
Chap. X permits closer access to endfire, but in all of the uniform line-source arrays
we must accept the fact that the two-dimensional conical scan that is available covers
a limited range in space -- very useful and converient within that range, but limited in
coverage.

The problem with uniform line sources posed in the paragraph above leads us to
the array structure discussed in this chapter, in which the line sources are
longitudinally periodic, rather than uniform. To form an array of these new line
sources, we proceed as in Chaps. IV and X, that is, we again take a linear phased array
of them, and we obtain scanning in the cross plane by introducing a phase shift
between successive parallel line sources.

The principle underlying these periodic line sources is the following. One employs
a dielectric section, for two purposes: to establish a slow basic wave, and to provide an
air-dielectric interface on which a printed-circuit periodic structure may be deposited
(or etched away). The longitudinally periodic structure then introduces space
harmonics, and the frequency and dimensions are so chosen that only one of these
space harmonics is radiating. As the beam corresponding to that space harmonic is
scanned, it covers the range from backward endfire, through broadside, and into part
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or all of the forward quadrant. In principle, therefore, the linear phased array of such
line sources can provide two-dimensional scan coverage of vp to the whole of space,
except for narrow regions ncar broadside and endfire. In practice, one may wish to be
more modest in the coverage, but clearly a much wider range is available than. that
provided by the longitudinally uriform line sources, which would typically be a cone in
the forward quadrant with elevation and azimuth angles extending to 700 or 750 from
the longitudinal axis of the line sources, and excluding the region near to endfire.

It is evident that a variety of structures may be devised that can provide an array of
longitudinally periodic line sources. In the remainder of this chapter we present one
example, which we feel is simple in configuration and for which we can provide a very
accurate theoretical analysis. It retains the periodic baffle arrangement employed in
the structures described in Chaps. IV and X (although in principle it does not need to)
because %ke then knov' that the antenna will not suffer from blind spots. With this
structure, the array will also radiate with neg!igible cross polarization and with no
grating lobes.
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A. STRUCTURE AND PRINCIPLE OF OPERATION

The array structure proposed here, which is longitudinally periodic rather than
uniform in order to provide greater scan coverage, is shown in Fig. 11.1. It consists cf
a linear phased array of line sources, in which a phase shift is introduced between each
of the successive parallel line sources to provide scanning in the cross plane. The
principles behind the cross-plane scanning have been described in Chap. II and they
have been applied in Chaps. IV and X to the specific arrays treated there. We will
therefore not repeat any of those results, but we will instead concentrate on the new
features here.

The array in Fig. 11.1 may be viewed as arising in the following way. We begin
with a wide dielectric-filled parallel-plate waveguide placed horizontally; the guide
height is then equal to b. A series of periodic parallel slits is then cut into the upper
plate of this parallel-plate guide. The mode introduced into the parallel-plate guide

-. - ....-..

a

Fig. 11.1 A new array s~ructurf- in which the individLal Unc.
sources are longitudinilly periodic, rather tha.-
uniform, in order to provide greater scan coverage.
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has a horizontal electric field, and is the lowest TE mode in that guide. Height h must
therefore be large enough to Sapport that mode above cutoff. (We could alternatively
have begun with a dielectric layer on a ground plane, thick enough to support the
lowest surface wave with horizontal electric field polarization, which would then have
a periodic array of strips deposited on the top surface.) To create the array, we then
insert an array of metal plates spaced a apart, as shown in Fig. 11.1 The spacing a is
arbitrary because the electric field is everywhere perpendicular to the plates, but a
should be small enough to avoid any grating lobes, and it could be taken to be equal to
b /2 if the individual elements in the array are each fed by dielectric-filled rectangular
waveguides rotated through 900 (at millimeter wavelengths the aspect ratio of
rectangular waveguides is two by one).

Dimensions a and b can thus be determined by those of feed rectangular
waveguides corresponding to the frequency and the value of r,, with their ratio equal
to 1/2. Height c should be just sufficient to damp out any higher modes that might be
excited. Because the electric field in this structure is always unidirectional, height c
could perhaps be safely reduced to zero without causing any cross-polarized radiation.
However, blind spots could be created over part of the cross-plane scanning range.
Our analysis retains the uppcr baffles of height c, so that no blind spots occur. We
have not checked whether or not any blind spots appear when c =0, but they may not;
if they don't, the structure can be simplified without any deterioration in performance.

Two geometrical parameters remain to be determined: the period of the slits or
strips on the air-dielectric interface, and the ratio of slit width to period. These
dimensions are indicated on Fig. 11.2, which shows the structure before the vertical
netal walls (spaced a apart) are inserted.

Before we can specify those dimensions, we need to review the principle of
operation of the line source, which in this problem is the same as the structure of
infinite width. Let us approach the performance from the small-aperture viewpoint,
meaning !hat we begin with a completely metallized top, for which no radiation
occurs, and then open up the slits gradually in the periodic array of slits cut in this top
wail. "Th slit is of width a' in a period of width p. For this electric field orientation,
the slit is actually a small-aperture perturbation of the upper wall, so that a gradual
opening of the slit, or of the ratio a'/p, permits a gradual cc;ntrol over the leakage rare
of thc radiation.

When periodicity is iintroJuccd in the z dircctio,,;, an infinite set ot space

harmonics is produced, where the propagation wavenurnber oi the n h space
harmonic is relaed to tlha! of the basic slow wave by
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a- ........ ".... . . . m

x
r- z

Fig. 11.2 The structure before the vertical metal baffles are
inserted, showing the metallic grating with its periodic
array of slits.

= kz+2n7r/p , n =,±,±2, (11. 

When there is leakage of power, both kzo and k are complex with the same

attenuation constant a, so that (11.1) becomes

16,, = 3o + 2nir/p (11.2)

In the small-aperture ':-it, the value ofO30 is close to the propagation constant of the

TE 1 mode in the dielectric-filled parallel-plate guide of height b, so that
1/2

00o/ko z I[r, -(Ao/12b )' 11] (11.3)

with 3o/k ° > 1, so that the basic guided wave is a slow wave, and therefore

nonradiating.

When p is selected so that one (or mo, e) of the space harmonics becomes fast, the

guided mode becomes leaky and iadiation occurs. For practical antenna operation,
we wish that only the n = -1 space harmonic is fast, with
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13-1 130 AO,
--- - < 1 (11.4)

ko  ko  p

The period p is thus selected relative to the wavelength so that (11.4) is satisfied; the
elevation angle 01 of the radiation is then given by

sin 0-1 = 3_1/k o  (11.5)

where 01 is measured from broadside, consistent with the designation for beam ang!e

in the other chapters. By changing the wavelength in (11.4), the angle 0.1 can be

scanned into either the backward or the forward quadrant.

Relation (11.1) is similar to expression (2.2) in Chap. 11, which applies to the space
harmonics produced by the periodic array of line sources in the cross plane. The basic
physics regarding the space harmonics is the same, but two important differences are
present. The first is related to the direction of the periodicity relative to the
propagation direction. The power is first fed into the individual periodically
modulated line sources in the longitudinal (z) direction, and the periodicity is in the
same direction. The power leaked as a result of that periodicity emerges in the yz
plane, moving basically upwards. The periodicity in the line-source array is then
located at the top of the array structure, where that periodicity (in x) is transverse to
the direction of the leakage, which is in the yz plane. The more important difference
is that in the line-source array the basic n =0 term is propagating and the intention is
to prevent the other space harmonics from radiating (no grating lobes), whereas in the

periodic line source the basic n =0 mode is nonradiating and we wish the n = -1 term
to radiate.

We shall see in Sec. D below that the angle in elevation of the radiated beam is
determined essentially by the value of period p relative to the wavelength (in
accordance with (11.4) and (11.5)), although the value of .3o , and therefore 3_, is also
influenced somewhat by other geometric parameters. The width of the beam is, as

usual, determined primarily by the value of the leakage constant a, which in turn
depends predominantly on the relative slit size a'/p. The azimuth scan angle is of
course determined by the phase shift introduced between the successive line sources.

Clearer insight into how one may select the optimum value for period p is
obtained by the discussion in Sec. B, where use is made of the k° vs. 0,, diagram.
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B. GENERAL PERFORMANCE CONSTRAINTS USING THE k vs./3 n

DIAGRAM

1. Description of the k. vs. fa Diagram

In attempting to optimize the set of dimensional parameters for the design of the
array of periodically modulated line sources, several aspects must be kept in mind.
First, we wish to have the n = -1 space harmonic be fast and correspond to a radiated
beam, but we want it to be the only space harmonic to do so over its complete scan
range. Second, we wish the feed waveguide to carry only one mode, the dominant one,
over the frequency range of operation (corresponding to the scan range).

A simple and convenient way to gain the necessary insights is to use the ko vs. o,

diagram, shown in Fig. 11.3. The diagram is periodic in 27r/p in the horizontal
direction along On, and only the first two periods centered about On =0 are included.

The -45O lines are defined by k0 = ±, ,, or shifts in them by ±2ir/p. The lower solid

curve labelled n =0 represents the basic n =0 space harmonic of the lowest mode.

Exactly parallel to it but shifted by -2ir/p is the (identical) curve labelled n = -1, which
represents the n = -1 space harmonic of that mode. Higher up we note the n =0 and

n = -1 space harmonic curves for the second mode, which we wish (o remain below
cutoff. The dashed straight lines, parallel to each other but shifted fi om each other by
2r/p, represent the asymptotes for the n =0 and n = -1 curves for both the lowest and
the second modes. Finally, the dashed curve represents a portion of the n = -2 space
harmonic for the lowest mode.

The abscissa is labelled 0,, because it applies to all the values of n provided we

select the proper curve. For example, broadside radiation occurs when 00 =27r/p, but

it also corresponds to #.I= 0. As we see, those points correspond to the same value of

k.
0

The convenience associated with this phrasing of the ko vs. 8,, diagram becomes

particularly clear when we consider the "radiation region", shown in Fig. 11.3 as
occurring between the ±45' lines centered at the origin. If the point on tie dispersion

curve lies within that region, the relevant space harmonic is a radiating one. If any
point lies within that region, the mode is leaky, with a complex propagation
wavenumber.

Let us next examine the meaning of the various circled points, labelled I through 8.
Point I shows the cutoff of the lowest mode in the parallel-plate guide, which is

I I I I I I I I I I I I I II
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dielectric filled and has a periodic array of slits on its top wall. For simplicity in the
discussion below, we shall assume that these slits are very narrow, so that radiation
can occur but the perturbation on the guide's properties is small. For frequencies (ko )

just above cutoff, in the range between points 1 and 2, the lowest mode is a fast mode,
and radiation will occur in the n =0 space harmonic. After point 2 the curve leaves
the radiation region, and the mode becomes a slow wave (,30 >k o ). After point 3,

however, the n = -1 space harmonic enters the radiation region, and as k° increases

further the n = -1 curve is seen to continue further into the radiation region.

Point 3 is located on the line 3.,= -ko , so that, from (11.5), the angle of the
radiated beam corresponding to that point is -90', or backward endfire. (From
sin 0o =,, /k. we recognize that the beam for the n = 0 space harmoric moves from
broadside to forward endfire, as the n =0 curve is traversed from point I to point 2,
the latter lying on the line,3o =ko.) As ko is increased, and we follow the n = -1 curve,

the angle of the radiated beam due to the n = -1 space harmonic moves up from
backward endfire towards broadside, which it reaches at point 4. After point 4, the
beam points in the forward quadrant.

At this stage, we must take into account the n = -2 space harmonic, and determine
when it enters the radiation region. A portion of the curve for the n -- 2 space
harmonic is shown dashed in Fig. 11.3, and it is seen to enter the radiation region at
point 5. Since 32 =-k o at point 5, the beam due to the n = -2 space harmonic will then

point at backward endfire. At that frequency, point 5 also occurs on the n = -1 curve,
which corresponds to some angle in the forward quadrant. The frequency
corresponding to point 5 represents the highest useful frequency for this set of
conditions, and the corresponding angle for the n = -1 beam represents the limit of the
useful scan range.

The above considerations assume that point 5 occurs at a lower value of k° than

point 6, which is the cutoff for the second mode. Either point may come first,
however, and it then determines the end of the useful scan rznge. When the second
mode is just above cutoff, it is seen to be right in the middle of the radiation region,
and the n = 0 space harmonic of that mode will radiate. The n = 0 space harmonic will
continue to radiate, traversing the forward quadrant, until point 7 is reached. For
frequencies very near to point 6, however, the n = -1 space harmonic for the second
mode does not radiate. That space harmonic enters the radiation region at point 8,
which is seen to occur at a lower value of ko than that for point 7, indicating that for a

norrow frequency range both the n =0 and n = -1 space harmonics for the second
mode will radiate, although at different angles. Clearly, we must insure that that mode
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remains below cutoff.

2. Some Constraint Conditions

In order to keep the conditions simple, we shall assume that the periodic array of
slits exerts only a small perturbation on the wavenumber values; we may thus employ
the equations corresponding to the "closed" waveguide. (We will find later, in Sec. D,
that this assumption is rather accurate.) We can then immediately write down simple
expressions that correspond to the various circled points I through 8 on the k° vs. On

diagram in Fig. 11.3.

Since the lowest mode is the TE 1 mode in dielectric-filled parallel-plate guide of

height b, the value of ko at the mode cutoff, which is point 1, is

7r 1
kI =- (11.6)

Ob

The value of ko at the cutoff of the second mode (the next mode with the same

polarization), which corresponds to point 6, is

27r 1
k - (11.)o b

At point 2, where the basic (n =0) space harmonic of the lowest mode changes from
fast to slow, we have fo =ko, where,3o is given by

1/2

13 [* O-(rh ) 2]1 (11.8)

The value of k. at point 2 is thus

7r 1
k - (11.9)o b V-r.1

For point 3, we must consider the n = -1 space harmonic, which is related to the
n =0 one by

Sy = we " t27r/p (tn aedr

Since point 3 is characterized by 0l.1 = -k o , we hav-e that k, is then obtained from
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= 27r/p - k2cr-(ir/b)2 1 (11.11)

which is a quadratic equation for ko . Point 4 corresponds to broadside radiation, for

which 3=0; on use of (11.8) and (11.10), we have
2 2 1/2

ko  b)+ (11.12)
1 2i r r 1

For point 5, which corresponds to the onset of radiation for the n - -2 space harmonic,
we specify

k° --1 _2 = -3 + 4,lp (11.13)

where 0o is taken from (11.8). If one wishes the values of ko corresponding to points

7 and 8, which we will not need, they may be obtained in the manner used above for
points 2 and 3, respectively, but for the second mode.

For the antenna to perform properly, the n = -1 space harmonic of the lowest
mode should produce the only radiating beam. We will next arrive at a simple criterion
for determining the range of values within which period p must be in order that this
condition is satisfied within certain limits.

We first note that, when the n = -1 space harmonic begins to radiate, the n =0
space harmonic must be slow. That is the same as saying that points 2 and 3 in Fig.
11.3 must lie below the top of the triangle on which they appear. If p is made larger,
these two points approach the top of the triangle. Hence, the maximum value that we
can allow p to have is the one for which points 2 and 3 have the same value of ko; at

this maximum value, k. must satisfy relations (11.9) and (11.11) simultaneously.

Their simultaneous solution yields the simple condition

P bmax =b V/ (11.14)

Another condition relates to the onset of the second mode. Certainly we wish the
second mode to remain below cutoff during the scan range. Relation (11.7) for the
cutoff of the second mode, which corresponds to point 6 in Fig. 11.3, is independent of
period p. The value of ko corresponding to point 4, at broadside, is seen from (11.12)

to increase if p is made smaller. A weak condition for the minimum value of p is then
obtained by asserting that the smallest value of p that we can tolerate is the one for
which the second mode is at cutoff when the n = -1 beam radiates at broadside. (At
least we can scan over one-half of space then.) We then equate the values of ko in
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(11.7) and (11.12) to obtain

Pmin = 2b/,/3 (11.15)

If we are to be able to select a value of p that lies between the p in and p max

values, we must have, at the least

Prmax > Pmin

or, from (11.14) and 1.15),

> 2.33 (11.16)

An alternative conlition for P in which is a stronger condition than the one in

(11.15), may be obtaineo by requiring that the ko v'ue corresponding to point 6 be

greater than or equal to twtt for point 5, rather than point 4. That is, the frequency at

which the second mode is at cutoff should be equal to or greater than that for which

the n = -2 space harmonic begins to radiate. To establish that condition, we equate

the values ofk o in (11.7) and (11.13) to obtain

4b
P i :_ (11.17)

If we then employ (11.14) and (11.17) to set Pmax greater than Pm.n' we find the

condition

2 Ty + % v/_3 V 'I- - 4v/i- > 0 (11.18)

which is satisfied for

Er > 2.89 (11.19)

Other conditions or constraints can also be specified to cover more precise

requirements. For our purposes, however, it seems sufficient to select a value of

Er =4.00 for our calculations, and to follow the Pmax and Pmin constraints in (11.14)

and (11.15).

We need next to select a frequency range of operation, and from it to choose the

cross-section dimensions. Taking the frequency range of about 40 Gnz to about 60

GHz, corresponding to an air-filled rectangular waveguide with cross-section

dimensions 2.388 mm by 1.194 rum, vhich we will employ as the basic feed waveguide,

our dielectric-filled region will have b =2.40) mm and a = 1.20 mm, since , =4.(X) (note

tl-at b and a in Fig. 11.1 are reversed from the usual rectangu',ar waveguide h and a,
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to be consistent with the notation in previous chapters in this report). The

recommanded operating range of this waveguide is then 39.3 GHz to 59.7 GHz, and

the cutoff frequency of the second mode is 62.8 GHz. (Actually, the 62.8 value
corresponds to a nominal guide width of 4.775 mm; when we choose b = 2.40 mm,
then b V,=4.80 mm, which corresponds to a cutoff frequency of 62.5 GHz for the

second mode, but these differences are of the order of the fabrication tolerances.)

Consistent with these dimensions, we then need to select a value for the period p.
From (11.14) and (11.15), we find P m in=2.77mm and pmax= 4 .16 mm Taking an

average of these two values, which i6 a satisfactory but arbitrary procedure, we obtain
p =3.45 nmm.

Corresponding to this set of dimensions and to c, =4.00, wc find the following

values for k., Ao and f for the various circled points in Fig. 11.3.

Point 1, the cutoff of the lowest mode (from (11.6)):

ko) = 0.654/mm , Ao = 9.60mm , f = 31.3GHz

Point 2, where the n =0 space harmonic goes from fast to slow (from (11.9)):

ko = 0.756/mm , A0 = 8.31mm , f = 36.1GHz

Point 3, where the n = -1 space harmonic begins to radiate, at backward endfire (from
(11.11)):

k° =0.822/mm , X0- =7.64 mm ,f = 39.3 GHz

Point 4, where the radiating n = -1 space harmonic reaches broadside (from (11.12)):

k° = 1.120/mm , A = 5.61mm , f = 53.5GHz

Point 5, where the n = -2 space harmonic begins to radiate, at backward endfire (from
(11.13)):

k" = 1.329/mm , Ao = 4.73 mm , f = 63.5 GHz

Point 6, the cutoff of the second mode (from ( 11.7)):
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/o = 1.308/mm , A0 = 4.80mm , f = 62.6GHz

The useful scan range corresponds to the frequency range from point 3 to beyond
point 4, approaching point 6. Point 3, by coincidence, corresponds exactly to the low
end of the recommended frequency range for this feed waveguide. Point 4, where the
beam is near broadside, occurs near the middle of the waveguide's frequency range. It
is also seen that the beam can scan past broadside into the forward quadrant. A
reminder should be given about the broadside region itself; it corresponds to an open
"stop band" region, so that one must avoid the narrow frequency range exactly in the
neighborhood of broadside. A clearer picture of just what happens there is provided
by the: merical results presented in Sec. D.

The end of the useful scan range for the n = -1 space harmonic corresponds to
either point 5 or point 6, whichever comes first as we raise frequency. It does not
matter which it is because one no longer has a single radiating beam in either case.
For this set of numbers, point 6 arrives i 2fore point 5, but they are close to each other.
We can readily determine how far into the forward quadrant the n = -1 beam goes

before these two points are reached. We simply determine the value of 1 1/ko for

each point, using (11.8) and (11.10), and then find the angle 0.1 fiom (11.5).

For point 6, the cutoff of the second mode, we find

0.1 = 20.10 (11.20)

whereas for point 5, where the n = -2 space harmonic begins to radiate, the value is

0.1 = 21.70 (11.21)

The fotal scan range in cle.tiuon for this type of leaky-wave antenna, for the set of
dimensions chosen abore, extends from backward endfire, through broadside, and
20.10 into the forward quadrant.

Obviously, by adjustins, parameters such as the period p, and the combination of b
and e,, one can move these critical , i nts around to extend the scan range further into

the forward quadrant, or to have point 5 occur before point 6, etc. The important

point that is made l.crc is that it is possible to control the performance characteristics
by emploving the approach and the simplic relations presented above.
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C. TRANSVERSE EQUIVALENT NETWORK

The treatment in Sec. B provides a road map that tells us what dimensions to
choose in order to achieve the scan range we wish over the frequency iange of
interest. It yields approximate values for the radiation angles as a function of
frequency on the assumption that the radiating slits perturb the basic guided wave only
slightly. It cannot, of course, provide any information about leakage rates or beam
widths. In order to obtain accurate numerical values for the leakage rates and the
radiation angles, we must develop an accurate transverse equivalent network and then

examine its resonances.

The transverse equivalent network must be complete and must take into account
all portions of the antenna's cross section. The array is viewed here in the same way
as it is in Chaps. IV and X, i.e., in terms of a unit-cell approach, which automatically
takes into account all mutual coupling effects. The transverse equivalent network
therefore needs to include oly the contents of a typical unit cell; the description of the
unit cell, its phase-shift walls, its modes, etc., have been presented in Chap. I, and
app'ied in detail in Chaps. IV and X. As before, the unit cell is composed of three
basic sections: the dielectric-filled section at the bottom, the air-filled parallel-plate
section in the middle, and the periodic section, representing the radiating region, at
the top. On the air-dielectric interface, at the transition between the bottom and
middle sections, we have an array of periodic slits, as seen in Fig. 11.1 and described
further in Fig. 11.2. We shall first discuss the equivalent network representation of
that array of pe; jodic slits, which is a basic constituent of the unit cell, and then
incorporate it into the transverse equivalent network for the full cross section.

1. Equivalent Network for the Array of Periodic Slits on
a Metal-Coated Air-Dielectric Interface

Since the electric field in this antenna is perpendicular to the vertical metal planes,
we may remove these planes without affecting the field distribution. It is more

convenient, then, to regard that array as a set of infinitely long slits, cut into a metal-
covered air-dielectric interface, with the electric field parallel to the long dimension of
the slits, as shown in Fig. 11.2, except that at this stage the height b is not being
considered. We seek a representation now for only the array at the interface, which
we view as a key constituent in the full transverse equivalent network.

R(.cognizing that space harmonics along the z direction, along the plane,
correspond to modes in the y direction, perpendicular to the plane, we require the
iMultimode equivalent network that couples the modes in the air region with those in
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the dielectric region. In the air region, only one mode is above cutoff, corresponding
to the n = -1 space harmonic, since we wish to have one radiating beam. In the

dielectric region, we will have at least two modes above cutoff, for n = -1 and n =0, but
there may also be some others, depending on c, and the geometric parameters.

We require an analytical formulation for the equivalent network parameters since
we wish to employ this formulation in a transverse resonance, and it would be nice if it
were also simple and in closed form. Such an analytical formulation, for multimode
operation, on a structure with different dielectrics on each side of the interface, is not
yet available in the literature. We have, however, developed such an analytical
solution recently [47] in a different context. The solution there was actually the dual of
that employed here, with an array of long strips on the interface, and with the
magnetic field parallel to those strips. For application here, we adapt that solution in
the small argument range, and take the dual form for both the network form and the
expressions for the parameters of the network. A detailed derivation of the integral
equation that was solved, together with the new equivalent network developed from it,
are included in a two-part paper that has been accepted for publication [48,49].

The constituent problem that is considered now is shown in Fig. 11.4, and is
phrased as a plane wave incident at an arbitrary angle on a grating of slits with the
electric field parallel to the slits. Superscripts (1) and (2) represent the two different
media, p is the grating period, and a' is the slit width. The aperture integral equation

is formulated rigorously in terms of a kernel that consists of a sum of static, rather
than dynamic, modes, and with the incident excitation correspondingly modified. The
modes are TE modes, so that the dynamic characteristic admittances are

Yon = k Y / w Y~a, i ka,I/wAo (11.22)

where
[k 2 _ 2 1/2 k [k 2  2 1/2

k l , Fko2r-kz ,0 ,k, (11.23)

The subscripts are to be interpreted in the following way. The subscript o in the
characteristic admittances mean that they are "dynamic", the subscript y represents
the transmission direction in the cross section, subscripts c and a signify the dielectric
region and the air region, respectively, and the n at the end indicates the number of
the space harmopic, or mode in they direction. The wavenumber kz, is which is the

same in each region, is



- 481 -

(1 (2)
r i r

i k__

Fig. 11.4 A constituent problem in the derivation of the
transverse equivalent network: the scattering of an
incident plane wave by a multimode metal grating on

an air-dielectric interface.

kz ,n = 50 -jct+2rn /p (11.24)

The "static" characteristic admittances are defined as

I nm (k lum (k

ye = , = (11.25)

On use of (11.23) and (11.24), Y n and Y reduce to

27 In I(11.26)
YsC,n sa,n V WO (1.6

where the subscript s signifies that the characteristic admittance is a "static" one.
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n

cO

Fig. 11.5 A novel and simple equivalent network that provides a
useful solution to the constituent multimode scattering
problem posed in Fig. 11.4.

When these terms are applied to the constituent scattering problem outlined in

Fig. 11.4, with its different notation (following the usage in [48,49]) the different media

are represented by superscripts (1) and (2), rather than subscripts c and a, so that

(11.26) would be written

(1) = (2) = 2rn (11.27)
s , ni _j oP

and wavenumber k,,,o would become

k = g ( 1 )o=k sinP = k(')sin J2)  (11.28)

When the integral equation is solved in the small-aperture range (a'/p << 1). a

very simple equivalent network representation is obtained, in which the network

elements are given by surprisingly simple but accurate expressions. The network is

shown in Fig. 11.5, where it is seen to take a planar form at the air-dielectric interface.
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Transmission lines are shown for only two modes, the n =0 and the n = -1 modes, but

others may be added on as indicated, in straight-forward fashion.

The expressions for the network elements are
2

JWM 0U P ?r a'1
J= - -- (11.29)Zo - 47r 12 p

y(1) y(2) 27r I n 1 1
= -1- (11.30),,* s ,n jw~Lop Zs ,'

Expression (11.29) may be rewritten as
2

Zo0 2 (11.31)

where

WtAoP p

Zs,= 27r--'j f- (11.32)
0

where V = 120n ohms, and is the characteristic impedance of free space. In

(11.31) and (11.32) we are returning to the notation in (11.26), since we will be using

that form in the full transverse equivalent network. Expression (11.30) may also be
rephrased as

o In l I
Y = - A - (11.33)s -j p Zs~

The equivalent network in Fig. 11.5 is rapidly convergent with respect to the
addition of transmission lines corresponding to further modes. When In I becomes

large, and the modes are below cutoff, the dynamic characteristic admittances Y0, n

and the static characteristic admittances Ys n are almost the same. When the

transmission lines are below cutoff, and they are terminated by their reactive

characteristic admittances, the input admittance at the interface plane is 2Y ' But,
the elements -2Y,,, (or -(Y +) (2) shown in the planar network are then added

S then added -1 , Sn

to the 2Y0,,, value, and the result approaches zero as In I increases. Thus, the

added transmission lines have an increasingly negligible effect.
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The validity and accuracy of this network and the associated expressions have been
verified in [49].

2. The Full Transverse Equivalent Network

The full unit cell consists of three sections, or regions, as stated above. In the
dielectric region, two or more modes with respect to the vertical (y) direction are
above cutoff; those two are the n =0 and n = -1 modes. In the air region, only the
n = -1 mode is permitted to be above cutoff, sincc we wish only a single iaaiating
beam. The same is true for the periodic region above, in which the radiation actually
occurs. Since the periodic region is assumed to be unbounded, we can terminate the
propagating transmission line that represents that region with its characteristic
admittance, Y,, 1, 1 .

In the dielectric-filled and air-filled parallel-plate guide regions the modes in they
direction are TE modes. After the higher modes in the vicinity of the grating at the
air-dielectric interface have decayed to negligible values in the air region, the only
mode remaining above cutoff is a TE mode that is actually a TEM mode propagating
at an angle in the y and z directions. With respect to the space harmonics along z, it
corresponds to the n = -1 space harmonic. The wavenumber of that mode is given by

2 2_ 2
k ,,.1 o z,_1 (11.34)

where

kz,-I a o"j- 27rip (11.35)

which are consistent with (11.23) and (11.24). The modal characteristic admittance
follows from (11.22) as

Yoa,.- = ky.,/% W o (11.36)

where the subscript a signifies the air region.

When the metal baffles are present, and separated by spacing a, the radiating
beam can be scanned in the cross plane, and therefore in azimuth, by inserting a phase
shift between the successive line-source sections in the array. That phase shift per unit
cell, Oc, is related to the wavenumber in the x direction by

Oc 
= k '_-a (11.37)

Wavenumber kp,.1 is real and is imposed on the system to produce the cross-plane

scan; it is exactly the same as the wavenumber kxo in Chaps. IV and X, which means

MMMp
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it corresponds to the lowest mode in the periodic waeguide. The subscript -1
corresponds to the original n = -1 space harmonic in the z direction, associated with
the periodic grating at the air-dielectric interface. When the metal baffles are present,

a second periodic structure is introduced, at right angles to the first, but they are
displaced from each other by height c (see Fig. 11.1) and they therefore do not
interact directly. Of the set of space harmonics set up in thex direction, only the n =0
term is above cutoff in the y direction in the periodic region. We then write for the

transmission wavenumber in they direction in the periodic region

2 2 2 2
k2 =k 0 - k -k (11.38)

which may then be restated as

k = k 2 - k 2 (11.39)Y p ,- )a,- xp,-

in view of (11.34).

The fields of the propagating mode in the periodic region have components of
electric and magnetic field in both the x and y directions when kxp,.1 #0, but there is

only a component of magnetic field in the z direction. With respect to they direction,

therefore, the mode is hybrid, but it can be characterized as an H (z-type mode or an
LSE mode with respect to the xy plane. The mode has been discussed in detail in Sec.

B,2 of Chap. IV, where it is shown that the characteristic admittance for the mode is,

from (2.18),

2 2

Y -- (11.40)YP'-1 k

so that we may write

op ,- kyai

Y 1  k _1  V(11.41)oa,,- 2

on use of (11.36), (11.34) and (11.39).

To complete the transverse equivalent network, we still require a representation
for the junction discontinuity between the air-filled parallel-plate guide and the
periodic waveguide. That discontinuity, however, is identical with one that we

encounter in a similar fashion in the arrays treated in Chaps. IV and X. We will

therefore not repeat the material here, but instead refer to the discussion in Sec. B,2

of Chap. IV.
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The representation for the discontinuity is rigorous, is taken from the Waveguide
Handbook [8] after an analytic continuation, and is shown in Fig. 4.3 of Chap. IV. It
is conveniently in the form of a reference plane shift d' from the actual discontinuity
plane, and the expression for d' is presented in (4.14) and (4.15), with some of the
terms defined in (4.12). We must be careful in using these expressions from Chap. IV,
however, to employ the correct terms since the notation used ,;re for the
wavenumbers is slightly different. The following substitutions are required: change

kYog and kxop to kya,-l and krp,-1"

We are finally in a position to put all the pieces together and to construct the full
transverse equivalent network, which appears in Fig. 11.6. Three modes are shown in
the network, the n =0, n = - and n = 1 modes, but more can be added in the simple
fashion shown. The planar network representing the grating at the air-dielectric
interface is shown coming off at angle; that network is the same as the one presented
in Fig. 11.5, but slightly modified and employing the present notation. The
transmission lines representing the modes in the dielectric-filled region are shown in
full because they may be above or below cutoff; even if they are below cutoff, they may
still "see" the short-circuit termination. For the air-filled region, we know that only the
n = -1 mode is above cutoff, and length c is chosen such that all the other modes have
decayed to negligible values at the radiating junction. Thus, the below-cutoff modes in
the air region may be safely terminated by their (reactive) characteristic admittances,
and only the transmission line for the n = -1 mode needs to be explicitly indicated.

The discontinuity at the radiating junction, between the air-filled parallel-plate
region and the periodic region, is accounted for by the reduction by d' of the height c
of the parallel-plate metal baffles. Finally, the termination on that transmission line is

Yo,-I because the periodic region is assumed to continue on into the far field. The
expression for Y is given by (11.40).

The diminishing contribution made by adding modes with higher values of n may
be assessed by the following. As tl'e value of n increases, the input admittance to the
short-circuited below-cutoff transmission line in the dielectric region approaches
)c, n' Iwhich in turn becomes the same as Yoa,n, and they both approach the static

characteristic admittance Ys,*n Therefore, the sum of that input admittance and

Yoa, when added to the term -2 Ys n that is in shunt with them in the network,
produces a result that approaches zero as n increases.
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D. ELEVATION ANGLE PERFORMANCE WITHOUT CROSS SCAN

When a phase shift is introduced between successive parallel line sources in the
array, and when this phase shift per unit cell is varied, the beam undergoes a conical
scan. The highest elevation angle for the beam, or the largest scan range in elevation

for the beam, occurs when the cross-plane scan is zero. It is thus best to examine the
elevation angle capability under this condition, and that is the objective in this section.

The unit cell structure simplifies under the condition of zero phase shift per unit
cell because the phase-shift walls then become electric walls, in view of the electric
field direction. This simplification was also found in the array structures treated in
Chaps. IV and X. The transverse equivalent network becomes correspondingly
simplified because the transmission line representing the propagating n = -1 transverse
mode in Fig. 11.6 then becomes infinitely long. We do not have to treat the junction
discontinuity, since it has disappeared, so that the input admittance to that
transmission line becomes its characteristic admittance. The principal complexity in
that network has therefore been removed. In the calculations that follow we have
employed 6 modes in the dispersion relation (meaning that 6 transmission lines have
been included in the transverse equivalent network in Fig. 11.6), namely, the
n = -3,-2,-1, 0, 1 and 2 modes.

The first piece of iiiformation we seek is whether or not there is a geometrical

parameter we can vary which will permit us to control the leakage constant Z without
changing the phase constant/3 at the same time. The candidate we have in mind is the
relative slit width a'lp of the grating on the air-dielectric interface (see Fig. 11.2).
Before examining the performance numerically, however, we must specify a
frequency. Since we wish to achieve a large elevation angle, we therefore select a
frequency corresponding to an angle near broadside.

The ko vs. 0,. diagram in Fig. 11.3 provides convenient physical insight into how

such a selection is made, but we can determine it directly by simply using relations
(11.3) to (11.5). In any case, let us employ the numerical determinations already
made in Sec. B in connection with the various points indicated on the ko vs. on

diagram. First, we must specify the dimensions of the elements in the array.
Referring to Figs. 11.1 and 11.2, the dimensions specified in Sec. B as corresponding
to the frequency range of 40 GHz to 60 GHz are:
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a = 1.2 0mm ,er = 4.00

b = 2.40mn, p = 3.45mm

For these dimensions, the frequency corresponding to broadside radiation, evaluated
in the small aperture limit, was found to be 53.5 GHz, corresponding to a value
k° = 1.120mm "1. When the beam begins to radiate, at backward endfire, we had

f =39.3 GHz and ko =0.822 mm "1 .

Calculations are presented in Figs. 11.7 through 11.10 for the normalized phase
constant ° / k o and the normalized leakage constant a/k0 as a function of the relative

slit width a'lp for two different values of k° corresponding to radiation near to

broadside. The value of ko = 1.096 mm 1 is employed in Figs. 11.7 and 11.8, whereas

ko = 1.099 mmI was selected for the other two figures.

The variation of 6o /ko with a'lp is seen in Fig. 11.7 to be relatively slight,

although it does increase a little as the slit width increases. It varies from .° /k ° = 1.60
at one end to 1.64 at the other. The n =0 space harmonic does not radiate, so its value
of normalized phase constant should be greater than unity. The radiating beam
corresponds to 0.1/ko , which may be computed from (11.4), and the elevation angle of

the radiation follows from (11.5). For the values at the two ends of the curve in Fig.
11.7 we obtain 0.1 = -3.4' and 0.1-.1. 10; these angles are very close to broadside, but

slightly in the backward quadrant. The angular change from one end of the range of
a'lp to the other end is really quite small, however.

From Fig. 11.8, on the other hand, we observe that the normalized leakage
constant a/k0 varies very substantially and rather rapidly as a'lp exceeds 0.20 or so.

The simple expressions (11.31) through (11.33) that were used in the dispersion
relation are known to be valid up to a°/p =0.3 or so, and we have therefore performed
computations up to that value. We note, however, that the beam width corresponding
to a'lp =0.3 in Fig. 11.8 already corresponds to A9=9.4, which is a rather wide beam.
(The beam width AO can be obtained by writing

AO = 285a/k°  (11.42)

where AO is in degrees, by combining (2.28) and (2.29), and recognizing that 0.4 is

almost zero, being ch .e to broadside.)

The data in Figs. 11.9 and 11.10 are similar to those in Figs. 11.7 and 11.8 except
that they apply to a value of k° even closer to that for broadside. The values of 0o/ko

are almost exactly the same in Figs. 11.9 and 11.7, but the a/k0 values in Fig. 11.10 are
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seen to be noticeably lar.er than those in Fig. 11.8. The value corresponding to
a'lp = 0.30 is now 3.6x 10 , for which the beam width is 10.30, rather than the 9.4*
obtained from Fig. 11.8. A much bigger change is observed for values for a'lp =0.26

or 0.28; for 0.26, for example, a/ko has changed from 0.50x 10' to 1.00x 10-2,

effectively doubling. Such a large change occurs because the angle is so near to
broadside; at angles away from broadside the modifications in a/k0 as we vary k by

small amounts would be much less pronounced.

The important conclusions from this set of four curves are that, as the relative slit
width is varied, the value of 6 /k. changes very little and that of a/k 0 changes very

strongly. Thus, the beam angle is determined primarily by the relative values of
A0 , b, p and er' and the beam width by those of a'lp, assuming that the antenna
length is chosen so that some specified percentage, like 90%, of the power is radiated.

The next set of curves presents the way the radiation angle and the leakage
constant vary as k. is changed. The vertical axis in each figure represents the values
of the free-space wavenumber ko , the right-hand-side abscissa shows the values of

a/k o , and the left-hand-side abscissa indicates the behavior of the beam angle 0.1. The
parameter a'/p is different in each of the figures.

We begin with the largest value of a'p in the set, namely, a'lp =0.27, in Fig. 11.11.
As we go vertically along the k. axis, we first reach the onset of radiation at which the

beam is at backward endfire, i.e., 0 I=-9 0 . The curve for 01, on the left-hand side, is
plotted in polar coordinate fashion, where 81 can only be positive, so that one reads
the value as 90* rather than -90' However, the direction of the curve reverses after it
crosses broadside in this plot. Thus, as ko increases, we see that the beam moves in

the backward quadrant from 90* to zero, at broadside, and then, after lingering there
for a bit, the beam continues on into the forward quadrant.

At the same tinie, the value of leakage constant a/ko increases from zero at the

onset of radiation but then rises sharply and dramatically when the beam approaches
broadside. Only about 1/3 of the full extent of the spike-type rise is shown in Fig.
11.11. The sharp peak corresponds to the open "stop band" near broadside, at which
the n =0 and n = -2 space harmonics become equal in amplitude but are oppositely
directed. (All the other space harmonics pair off in like fashion.) The rise in a is
predominantly reactive, not radiative, so that a sharp increase is observed in reflected
power, together with pattern deterioration. The narrow region near broadside is to be
avoided in practice, but, unless the beam is rather narrow, one can scan through the
region and hardly notice any effect. Just on the other side of the spike in a/k 0 , the
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&'/p " 0.271
1.25

1.00

/ b = 2.40 mm

e£ 4.00

0.75

4r 9000 1.0 2.0

0.1 a/ko (x10 s )

Fig. 11.11 On the vertical axis is the free-space wavenumber k,,;
the right-hand abscissa axis represents the normalized
leakage constant a/ko ; and the left-hand abscissa axis
shows the elevation beam angle 0.: in degrees. Angle
k. appears in polar coordinate form, so it is always
positive; however, it is in the backward quadrant for
lower values of ko and enters the forward quadrant
after passing through broadside. The sharp peak in
a/k o is due to the open "stop band" near broadside.

This case corresponds to relative slit width
a '1p = 0.27, and to zero cross-plane scan.
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curve drops extremely sharply; we expect that it should go to zero, but the calculation
steps were not fine enough to exhibit that behavior.

The other three figures in this set are Figs. 11.12, 11.13 and 11.14, for which
a'lp =0.25, 0.22 and 0.10, respectively. The curves for 61 are hardly distinguishable
from each other, but the ones for a/k change in systematic ways, as expected. The

magnitude of a/k, decreases as a'lp is reduced, consistent with Figs. 11.8 and 11.10,
and the width and extent of the "stop band" spike become smaller as a'lp is reduced.
The leakage rate for the value a'/p =0.10 in Fig. 11.14 is so small that it was necessary
to expand the abscissa scale by a factor of 50; the "stop band" region was not
computed for this case.

Figures 11.7 through 11.14 therefore tell us how 30/k. and a/ko behave as we

change either the slit width or the frequency (actually ko ). Increasing the slit width
changes the 1/ko value (and therefore the beam angle 0.') relatively little, but it
produces a large change in the value of a/ko , which in turn affects the beam width.
As frequency, or ko , is increased, the beam swings around as we expect from the

discussion in Sec. B, and the leakage rate increases slowly over most of the scan range,
but behaves wildly in the "stop band" region near broadside, which should therefore be
avoided unless the beam is sufficiently wide.
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koa'/p 0.25
1.25

1.00

Cr 4.00

0 4* wf*o1.0 2.0

0.1 ca/k 0  (x102,)

Fig. 11. 12 Same as Fig. 11.11, but for a'p = 0.25.



- 499 -

0 a'/p 5-022

1.1.02m

0 4" 900 ,0 4.00
0.7

0.1 c/k 0  (>,10-')

Fig. 11.13 Same as Fig. 11.11, but for alp - 0.22, a much
narrower aperture.
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ko

1.25 [a'/p " 0.10

1.00

a 1.20 mm
b = 2.40 mm
p = 3.45 mm
e = 4.00

0.75

I L L L WI ,

e 45" 90 0 0.10

.o/k (x105)

Fig. 11.14 Same as Fig. 11.11, but for a"lp = 0.10, a very tiny
aperture electrically. The right-hand abscissa scale
has been multiplied by 50 as compared with Fig. 11.11.
and the "stop band" region was not calculated.
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E. EFFECTS OF CROSS-PLANE SCANP ING

As in the arrays described in Chaps. IV and X, scanning in the cross plane, and
therefore in azimuth, is accomplished by inserting a phase shift between successive
parallel line sources in the array. The phase shift introduces a wavenumber
component in the x direction, which we have called k because it occurs in the

periodic waveguide and is due to the n = -1 space harmonic for the array of slits on the
air-dielectric interface. With respect to the periodic array of line sources, it represents
the n =0 space harmonic, since that is the only one that is above cutoff in the vertical
(y) direction.

The phase shift per unit cell is then k _.a, where a is the width of each unit cell;

this statement is the same as the one in (10.92) or (10.68) of Chap. X. In Chap. X, the
phase shift per unit cell was used as a measure of the cross-plane scan. In Chap. IV, it
was 0r , where sinO =ko /ko, as shown in (4.10), for example, and k is the

equivalent of k here. We have not been consistent in this report with respect to
what measure to employ for the cross-plane scan, and it is not clear which one is best.
We have chosen the ratio k.r,.l/k as the measure in this chapter. The three

measures are, therefore: -, or sin' (kx p /k ), in Chap. IV, kXO a in Chap. X, and
kxp, /k° in this chapter. With respect to the measure employed now, we see that the
scan range cannot exceed unity, a convenient maximum value.

As discussed in the other two chapters, the radiating open-end discontinuity
between the periodic waveguide and the air-filled parallel-plate guide is no longer
neglectable when kxp 1 # 0, and it produces two principal effects: a standing wave
between that discontinuity and the one representing the grating on the air-dielectric
interface, and possible coupling to channel-guide leaky modes excited at the radiating
open end. Two other concerns arise with respect to cross-plane scan: possible
deviations from strict conical scan, and the possible presence of blind spots. The
calculation results discussed below address all these questions.

First, we examine the behavior of 30/k o and a/ko as a function of the relative
height c/A 0 of the metal baffles, i.e., the air-filled parallel-plate region. In Figs. 11.15

and 11.16 we present the variations with c/A, of , ko and a/k0 , respectively, for a
relatively large phase shift, corresponding to kxp, 1/k o =0.90, and a value of

k° = 1.099mm . We observe that the curve for 6o/ko possesses a slight periodic
variation as c /A0 changes, but that its amplitude is very small and its average value is

almost the same as that found for k Xp,.1 =0, i. Fig. 11.9, for a'lp =0.25, which is the
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value used here. The curve for a/k in Fig. 11.16, however, shows a very large

periodic variation with c1/Ao, where the maximum value is nearly five times the

minimum value. The average value of the variation is seen to agree fairly well with

the value for a'/p =0.25 in Fig. 11.10, showing that the average value is approximately

what one would find when the radiating discontinuity is replaced by metal walls

continuing indefinitely.

It is interesting to note that no interactions with channel-guide leaky modes were

found for this set of parameters. The beam width in elevation corresponding to the

maximum value of a/k o in Fig. 11.16 is only about 2.7' so a larger value of a'/p may

be necessary before these interactions occur.

The curves in Figs. 11.15 and 11.16 correspond to ko = 1.099mm-1 which, for the

dimensions listed, would correspond to an angle in elevation equal to about -1 ° if

k .i1=0. That result agrees with the discussion in Sec. D. Now, with k4 , 1/k 0 =0.90,

the beam position is quite different. We recall that the beam undergoes conical scan;

when the elevation angle before cross scan is close to broadside, however, the azimuth

angle rapidly approaches near to 90. From (2.16) or (10.93), we know that if the

elevation angle before cross scan is 1° the azimuth angle when the beam hits the

ground will be 890 (or -1 ° and 91 ' respectively). For an arbitrary value of kXP..1/ko,

we may compute the actual values of elevation angle 01 and azimuth angle 01 from

(10.98) and (10.99), which are, in present notation,
1/2

sin 0 1  (jkx,.I/k0 ) 2 + (#_. 1k0) 2 1/ (11.43)

and

sinO-, 2 21/2 (11.44)
[(k p,_Ik )2+ (n/k<,)2} I

where k ,l/ko is imposed and 3 1/k o is given by (11.4), with the values of 3 o 1k

furnished by the various curves.

For the parameters in Fig. 11.15, we find from (11.43) and (11.44) that the

elevation angle 01 and the azimuth angle 4-, corresponding to kxp.Ilko =0.90, are

0 - 64 .2 0' 4 -1 = 8 90
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In the final sets of curves, our goals are to determine the deviation from conical
scan and to see if there exists any evidence for or tendency towards blind spots during
the cross-plane scan process. Towards these ends, we present numerical results for
6 /ko and a/ko as a function of the relative phase shift, measured by kXP ' 1/k0o, over
the whole scan range, for several cases.

In Figs. 11.17 through 11.19, we have selected a°/p =0.25, and we present results
for 3o/k o for three quite different conical scan situations. For Fig. 11.17, the
elevation angle before cross-plane scan is about -1°, as in Figs. 11.15 and 11.16. The
conical scan here corresponds to the widest possible one, coming from almost
broadside down to the ground in elevation, and ending with the beam at 0_=91. For
Fig. 11.18, the value of = 0.9325 mm t , so thatAo =6.738 mm; with 0o/k o = 1.455, as
obtained from the figure for k1p,. 1/k0 =0, we find that the elevation angle before
cross-plane scan is -29.9", in the backward quadrant. When this beam reaches the
ground, 4.1119.9. For the third scan situation, in Fig. 11.19, we have
ko =0.8492mmI and Ao =7.399 mm, and ftom the figu-e we see that 0 /k 0 =1.313
when k., ,/ko =0. The elevation angle 0. before cross-plane scan is therefore -56.3".
which is much closer to the ground, near backward endfire; the value of azimuth angle
at the other end of the scan range is 0.1 = 146.3".

Let us now look at the behavior of 30 /ko in Figs. 11.17 through 11.19 over the
remainder of the scan range. We see that the curves are almost flat; the one in Fig.
11.17 rises very slightly, the one in Fig. 11.19 drops very slightly, whereas the one in
the middle range of scan, Fig. 11.18, seems completely flat. In all cases, the curves are
so flat that we can assert that any deviation from conical scan is very small indeed.

We also note from these figures that the scan range changes as well from one to
the other. The maximum value that kx, 1/k o can have, corresponding to the end of

the scan range, when the beam reaches the ground, is given in Chap. X as (10.96); we
repeat it here in present notation as

. -1

(k.,/k)max = cos(0 1)4 =0 = cos(sin 0_1l/k o )4 0  (11.45)

For Fig. 11.17, the original elevation angle was so near to broadside that the maximum
value of kp, 1/k o is essentially uity. For Fig. 11.18, the value of (0 -29.9", so

that k.p,. 1/ko =0.867, in agreement with the curve in the figure. We found that the
elevation angle before cross-plane scan was 56.3" for the parameters in Fig. 11.19, so
that (k,.1/ko)ma is found from (11.45) to be 0.555, in exact agreement with the

curve in Fig. 11.19.
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go/ko ..

a = 1.20mm a'/p .25
b u 2.40 mm
p = 3.45 mm

C'4.00 F1.
c = 2.40 mm ko  1.099 mm'I

0 L I I I I I I

0.0 0.5 1.0

Cross-plane scan k,_ /ko

Fig. 11.17 Behavior of 1Io /ko , the normalized phase constant of
the basic n = 0 space harmonic, as a function of
kv,.Ik o, ,a measure of the amount of cross-plane
scan, over the whole scan range. For this case, the

relative slit width a'7p = 0.25, and the free-space
wavenumber ko is 1.099 mm " , for which the beam is
almost at broadside when the cross-plane scan is zero.
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So0/ko

a 1.20 mm Fa'/p = 0.25
b - 2.40 mm
p = 3.45 mm

C, 4.00

C = 2.40 mm ko  0.9325

0 I.......... I I _ I

0.0 0.5 1.0

Cross-plane scan kp,.1/ko

Fig. 11.18 Same as Fig. 11.17, but for k,, =0.9325 mm-, for which
the beam is at -29.9* from broadside when the cross-
plane scan is zero.
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Po/ko

a = 1.20 mm a'/p = 02
b - 2.40 mm
p - 3.45 mm
ef f 4.00
c M 2.40 mm k. 0.8492 mm

I I _ £ S S

0.0 0.5 1.0

Cross-plane scan kxp,.I/k o

Fig. 11.19 Same as Fig. 11. 17, but for k, = 0.8492 mm" , for which
the beam is at -56.3* from broadside when the cross-
plane scan is zero.
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The companion figures to Figs. 11.17 through 11.19, for a/ko instead of Bo /k o , are

Figs. 11.20 through 11.22. The most important point to note about these curves is that
they are re!atively flat until near the end, where they drop to zero because the beam
has reached the ground and all radiation ceases. There are no sharp dips anywhere, so
that there is no evidence of blind spots. All three figures have the same ordinate scale,
and we have seen in Figs. 11.11 through 11.14 that the value of a/ko decreases as the
value of ko is reduced, so it is to be expected that the level of a/ko, becomes

progressively smaller in these three fijures.

Finally, we can obtain added inuximation by referring to Fig. 11.16, which shows
a/k o vs. baffle height c/A o for k i,.l/k o =0.90. The value of c chosen for the

calculations in Figs. 11.17 through 11.22 is 2.40 mm; in both Figs. 11.16 and 11.20 the
value of Ao is 5.716 mm, so that c/A o =0.420 in Fig. 11.20. That value in Fig. 11.16

corresponds to a point approximately mid-way in the amplitude variation, and not
much different from the value before cross-plane scan. As kp,.1 increases, we would

therefore expect the value of a/k0 to remain relatively flat over the whole scan range,
as we find in Fig. 11.20. If the value of c were chosen to correspond to the bottom of
the periodic variations in Fig. 11.16, the curve in Fig. 11.20 would drop off more
rapidly; if it corresponded to the top of the variations, the curve in Fig. 11.20 would
peak up before dropping down to zero at the end of the scan range. Such behavior
was obtained in Chaps. IV and X for the same reason. The curve of 0% /ko in Fig.
11.17 would probably not be quite as flat if c were chosen to correspond to the top or
the bottom of the periodic variations, but, again judging from our experience with the
other arrays, the change would be expected to be small.

The last set of curves is shown in Figs. 11.23 to 11.28. They are similar to those in
Figs. 11.17 through 11.22, except that a larger slit aperture was selected, with
a'/p =0.26 rather that 0.25, so that larger values of a/k o are obtained. All of the

behavior characteristics for a/ko and 0 /k are similar to those for a'/p =0.25.

Instead of choosing the largest elevation angle before cross-plane scan to be
almost at broadside, however, a value slightly removed from it was taken, in Figs.
11.23 and 11.26. The value of k° =1.058mm "1, so that Ao =5.94 mm; the value of

,60/k o from Fig. 11.23 is seen to be 1.60, so that /./k o =0.122 and 04 at , =0 is -7.0*,
which is still close to broadside but away from the "stop band" region. The maximum
value of kxp,. 1 /k o is now 0.99, as found from (11.45), so that essentially the complete

scan range is achieved; this minor distinction is actually discernable in Figs. 11.23 and
11.26.
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a/ko _

a - 1.20 mM ['/pii 0.25I
(x O' ) b - 2.40 mm

p - 3.45 mm
-r4.00 F
c 2.40 mm ko  1.99m

1.0

0.0

0.0 0.5 1.0

Cross-plane scan kp,.I/k o

Fig. 11.20 Behavior of a/k. , the normalized leakage constant, as
a function of k,P.I/k, . See caption for Fig. 11.17 for
further information.



2.0

(xlO ) 1.20m a'p 02b 2.40 mm
p 345 MM

4.00

.0C 2.40 mm k0  = 0.9325mm'l

0.0

0.0 0.51.

Cross-plane scan x,/k

Fig. 11.21 Same as Fig. 11.20, but for k., =0.9325 mm -1, for which

the caption for Fig. 11. 18 contains further information.
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2.0

ct/ko

(xlO' ) a - 1.20 mm a'/p = 0.25
b - 2.40 mm
p - 3.45 mm

1.0 c 2.40 mm ko  0.8492 mm-

0.0 0.5 1.0

Cross-plane scan kxp,.1 /k o

Fig. 11.22 Same as Fig. 11.20, but for k, =0.8492 mm"1 , for which
the caption for Fig. 11.19 contains further information.
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2

,8o/ko

1 a 1.20mm /P " 0.26
b = 2.40 mm
p 3.45 mm
e = 4.00

c - 2.40 mm k 1.058 MM,

0 I I I , I I I

0.0 0.5 1.0

Cross-plane scan k,.I/ko

Fig. 11.23 Same as Fig. 11.17, but for a'/p = 0.26, and for
ko = 1.058 mm, for which the beam is at -7.0* from
broadside when the cross-plane scan is zero.
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)6o/ko

a - 1.20 m I I/p -o.6

b - 2.40 mm

p = 3.45 mm
c W 2.40 mm ko  0.9325 mm "

0 I I I I a a a .

0.0 0.5 1.0

Cross-plane scan kxp,.1/ko

Fig. 11.24 Same as Fig. 11.23, but for ko a 0.9325 mm -, for which
the caption in Fig. 11.18 contains further information.
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2i

a - 1.20 mm a'/p 0.26
b 2.40 mm
p 3.45 mm
er 4.00
c - 2.40 mm k. 0.mm "

0 1 - I I I I_

0.0 0.5 1.0

Cross-plane scan kxp,.1/k o

Fig. 11.25 Same as Fig. 11.23, but for k0 =0.8492 mm - for which
the caption in Fig. 11.19 contains further information.
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2.0

o/k o

(Xlo,) = 1.20 mm a'/P " 0.26

b - 2.40 mm

p - 3.45 mm

e = 4.00
1.0 c = 2.40 mm k = 1.058 mm'

0 . 0 1 I I I I I

0.0 O.S 1.0

Cross-plane scan kxp,.1/ko

Fig. i1.26 Same as Fig. 11.20, but for a'/p = 0.26, and for

k° = 1.058 mm -, for which the caption in Fig. 11.23

contains further information.
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2.0

a/k 0

a W 1.20 mm a'/p 0.26
b - 2.40 mm
p = 3.45 mm

e ~4.00 Zj~3 5~
1.0 c - 2.40 mm k. 0.9325 mn

0.0

0.0 o.S 1.0

Cross-plane scan kp,.1/k °

Fig. 11.27 Same as Fig. 11.26, but for k. = 0.9325 mm , for which
the caption in Fig. 11.18 contains further information.
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2.0

a/ko

(x10 2 ) .20 mm ap .2

b - 2.40 mm
p - 3.45 mm

er 4.00 KjI 9 m
1.0 c - 2.40 mm k. 0.8492 mm1l

0.0 ----------

0.0 0.5 1.0

Cross-plane scan k,._/ko

Fig. 11.28 Same as Fig. 11.26, but forko- =O.8492 mm . for which
the caption in Fig. 11.19 contains further information.



-519-

We have not examined the effect on performance of changes in width a The
behavior of the array when the cross-plane scan is zero is unaffected by that
dimension, but some practical considerations are required with respect to the phase-

shift scanning aspects. Although this matter should be considered more carefully,
some preliminary comments can be made now. First of all, the width a will be quite
small unless some structural modifications are made. Let us assume that height b of
the dielectric-filled region is 3X,/4, which is 3,\o/8 when c, =4.00. Thus, width a will

be 3.Ao/16, which is rather small. The width can be increased by tapering, which

introduces mechanical complexity. A small width would require only a small phase
shift per element, but more elements, and therefore more phase shifters, would be
needed for the same beam width in azimuth. An advantage to a narrower width is

that the height c of the metal baffles can be made smaller, since the higher modes in
the air-filled region would then decay more rapidly. It is clear that tradeoffs are
involved that require further consideration.

The array treated in this chapter differs from the other two arrays, discussed in
Ch.ms. IV and X, in that the leaky-wave line sources are periodically modulated here,
as we pointed out at the beginning of the chapter. This distinction has permitted a
larger and more versatile scan range, as desired, but otherwise the behavior during
cross-plane scan is qualitatively similar to what was found for the other arrays.
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